Please wait a minute...

Quantitative Biology

Quant. Biol.    2017, Vol. 5 Issue (3) : 205-209     DOI: 10.1007/s40484-017-0112-7
MINI REVIEW |
Multifaceted roles of complementary sequences on circRNA formation
Qin Yang1, Ying Wang1, Li Yang1,2()
1. CAS Key Laboratory of Computational Biology, Collaborative Innovation Center of Genetics and Development, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
2. School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
Download: PDF(417 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Circular RNAs (circRNAs) from back-spliced exon(s) are characterized by the covalently closed loop feature with neither 5′ to 3′ polarity nor polyadenylated tail. By using specific computational approaches that identify reads mapped to back-splice junctions with a reversed genomic orientation, ten thousands of circRNAs have been recently re-identified in various cell lines/tissues and across different species. Increasing lines of evidence suggest that back-splicing is catalyzed by the canonical spliceosomal machinery and modulated by cis-elements and trans-factors.

Results: In this mini-review, we discuss our current understanding of circRNA biogenesis regulation, mainly focusing on the complex regulation of complementary sequences, especially Alus in human, on circRNA formation.

Conclusions: Back-splicing can be significantly facilitated by RNA pair formed by orientation-opposite complementary sequences that juxtapose flanking introns of circularized exon(s). RNA pair formed within individual introns competes with RNA pair formed across flanking introns in the same gene locus, leading to distinct choices for either canonical splicing or back-splicing. Multiple RNA pairs that bracket different circle-forming exons compete for alternative back-splicing selection, resulting in multiple circRNAs generated in a single gene locus.

Author Summary  A large amount of circRNAs have been recently re-discovered from thousands of gene loci in various cell lines/tissues and across different species, and have been suggested to play important roles in gene expression regulation with different mechanisms of action. These results thus expand our understanding on the complexity and diversity of eukaryotic circular RNAs. Recent studies have shown that both cis-elements and trans-factors can promote back-splicing for circRNA biogenesis. We review recent research progress on the regulation of circRNA biogenesis, focusing on our current understanding of the complex regulation of cis complementary sequences, especially Alus in human, on circRNA formation.
Keywords circRNA      circRNA biogenesis      back-splicing      cis-elements      complementary sequences      Alu     
Corresponding Authors: Li Yang   
Just Accepted Date: 21 June 2017   Online First Date: 28 July 2017    Issue Date: 24 August 2017
 Cite this article:   
Qin Yang,Ying Wang,Li Yang. Multifaceted roles of complementary sequences on circRNA formation[J]. Quant. Biol., 2017, 5(3): 205-209.
 URL:  
http://journal.hep.com.cn/qb/EN/10.1007/s40484-017-0112-7
http://journal.hep.com.cn/qb/EN/Y2017/V5/I3/205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qin Yang
Ying Wang
Li Yang
Fig.1  Schematic models of multifaceted roles of complementary sequences on circRNA formation.
1 Chen,L. L. (2016) The biogenesis and emerging roles of circular RNAs.Nat. Rev. Mol. Cell Biol., 17, 205–211
doi: 10.1038/nrm.2015.32
2 Chen,L. L. and Yang, L. (2015) Regulation of circRNA biogenesis.RNA Biol., 12, 381–388
doi: 10.1080/15476286.2015.1020271
3 Lasda,E. and Parker, R. (2014) Circular RNAs: diversity of form and function.RNA, 20, 1829–1842
doi: 10.1261/rna.047126.114
4 Yang,L. (2015) Splicing noncoding RNAs from the inside out.WIREs RNA, 6, 651–660
doi: 10.1002/wrna.1307
5 Zhang,Y., Zhang, X. O., Chen,T. , Xiang,J. F., Yin,Q. F., Xing,Y. H., Zhu, S., Yang,L. and Chen,L. L. (2013) Circular intronic long noncoding RNAs.Mol. Cell, 51, 792–806
doi: 10.1016/j.molcel.2013.08.017
6 Jeck,W. R., Sorrentino, J. A., Wang,K. , Slevin,M. K., Burd,C. E., Liu,J., Marzluff, W. F. and Sharpless,N. E. (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA, 19, 141–157
doi: 10.1261/rna.035667.112
7 Memczak,S., Jens,M., Elefsinioti,A. , Torti,F., Krueger, J., Rybak,A. , Maier,L., Mackowiak, S. D., Gregersen,L. H. , Munschauer,M., et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency.Nature, 495, 333–338
doi: 10.1038/nature11928
8 Salzman,J., Chen,R. E., Olsen,M. N. , Wang,P. L. and Brown, P. O. (2013) Cell-type specific features of circular RNA expression.PLoS Genet., 9, e1003777
doi: 10.1371/journal.pgen.1003777
9 Salzman,J., Gawad, C., Wang,P. L. , Lacayo,N. and Brown, P. O. (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types.PLoS One, 7, e30733
doi: 10.1371/journal.pone.0030733
10 Zhang,X. O., Wang,H. B., Zhang,Y., Lu, X., Chen,L. L. and Yang,L. (2014) Complementary sequence-mediated exon circularization.Cell, 159, 134–147
doi: 10.1016/j.cell.2014.09.001
11 Yang,L., Duff,M. O., Graveley,B. R. , Carmichael,G. G. and Chen, L. L. (2011) Genomewide characterization of non-polyadenylated RNAs.Genome Biol., 12, R16
doi: 10.1186/gb-2011-12-2-r16
12 Yin,Q. F., Chen,L. L. and Yang,L. (2015) Fractionation of non-polyadenylated and ribosomal-free RNAs from mammalian cells.Methods Mol. Biol., 1206, 69–80
doi: 10.1007/978-1-4939-1369-5_6
13 Zhang,Y., Yang,L. and Chen,L. L. (2016) Characterization of Circular RNAs.Methods Mol. Biol., 1402, 215–227
doi: 10.1007/978-1-4939-3378-5_17
14 Chen,L. L. and Yang, L. (2017) ALUternative regulation for gene expression.Trends Cell Biol., 27, 480–490
doi: 10.1016/j.tcb.2017.01.002
15 Hansen,T. B., Veno,M. T., Damgaard,C. K. and Kjems,J. (2016) Comparison of circular RNA prediction tools.Nucleic Acids Res., 44, e58
doi: 10.1093/nar/gkv1458
16 Zhang,X. O., Dong,R., Zhang,Y., Zhang, J. L., Luo,Z. , Zhang,J., Chen,L. L. and Yang,L. (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs.Genome Res., 26, 1277–1287
doi: 10.1101/gr.202895.115
17 Jeck,W. R. and Sharpless, N. E. (2014) Detecting and characterizing circular RNAs.Nat. Biotechnol., 32, 453–461
doi: 10.1038/nbt.2890
18 Dong,R., Ma,X. K., Chen,L. L. and Yang, L. (2016) Increased complexity of circRNA expression during species evolution.RNA Biol., 1–11. doi: 10.1080/15476286.2016.1269999
19 Ivanov,A., Memczak, S., Wyler,E. , Torti,F., Porath, H. T., Orejuela,M. R. , Piechotta,M., Levanon, E. Y., Landthaler,M. , Dieterich,C., et al. (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals.Cell Rep., 10, 170–177
doi: 10.1016/j.celrep.2014.12.019
20 Rybak-Wolf,A., Stottmeister, C., Glazar,P. , Jens,M., Pino,N., Giusti,S., Hanan, M., Behm,M. , Bartok,O., Ashwal-Fluss, R., et al. (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed.Mol. Cell, 58, 870–885
doi: 10.1016/j.molcel.2015.03.027
21 Westholm,J. O., Miura, P., Olson,S. , Shenker,S., Joseph, B., Sanfilippo,P. , Celniker,S. E., Graveley, B. R. and Lai,E. C. (2014) Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation.Cell Rep., 9, 1966–1980
doi: 10.1016/j.celrep.2014.10.062
22 Ashwal-Fluss,R., Meyer, M., Pamudurti,N. R. , Ivanov,A., Bartok, O., Hanan,M. , Evantal,N., Memczak, S., Rajewsky,N. and Kadener,S. (2014) circRNA biogenesis competes with pre-mRNA splicing.Mol. Cell, 56, 55–66
doi: 10.1016/j.molcel.2014.08.019
23 Starke,S., Jost,I., Rossbach,O. , Schneider,T., Schreiner, S., Hung,L. H. and Bindereif,A. (2015) Exon circularization requires canonical splice signals.Cell Rep., 10, 103–111
doi: 10.1016/j.celrep.2014.12.002
24 Zhang,Y., Xue,W., Li,X., Zhang, J., Chen,S. , Zhang,J. L., Yang,L. and Chen,L. L. (2016) The biogenesis of nascent circular RNAs.Cell Rep., 15, 611–624
doi: 10.1016/j.celrep.2016.03.058
25 Liang,D. and Wilusz, J. E. (2014) Short intronic repeat sequences facilitate circular RNA production.Genes Dev., 28, 2233–2247
doi: 10.1101/gad.251926.114
26 Lander,E. S., Linton, L. M., Birren,B. , Nusbaum,C., Zody,M. C., Baldwin,J., Devon, K., Dewar,K. , Doyle,M., FitzHugh, W., et al. (2001) Initial sequencing and analysis of the human genome.Nature, 409, 860–921
doi: 10.1038/35057062
27 Chen,L. L., DeCerbo, J. N. and Carmichael,G. G. (2008) Alu element—mediated gene silencing.EMBO J., 27, 1694–1705
doi: 10.1038/emboj.2008.94
28 Guarnerio,J., Bezzi, M., Jeong,J. C. , Paffenholz,S. V., Berry, K., Naldini,M. M. , Lo-Coco,F., Tay,Y., Beck,A. H. and Pandolfi, P. P. (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations.Cell, 165, 289–302
doi: 10.1016/j.cell.2016.03.020
29 Conn,S. J., Pillman, K. A., Toubia,J. , Conn,V. M., Salmanidis, M., Phillips,C. A. , Roslan,S., Schreiber, A. W., Gregory,P. A. and Goodall,G. J. (2015) The RNA binding protein quaking regulates formation of circRNAs.Cell, 160, 1125–1134
doi: 10.1016/j.cell.2015.02.014
30 Kramer,M. C., Liang, D., Tatomer,D. C. , Gold,B., March, Z. M., Cherry,S. and Wilusz,J. E. (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins.Genes Dev., 29, 2168–2182
doi: 10.1101/gad.270421.115
31 Castello,A., Fischer, B., Eichelbaum,K. , Horos,R., Beckmann, B. M., Strein,C. , Davey,N. E., Humphreys, D. T., Preiss,T. , Steinmetz,L. M., et al. (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.Cell, 149, 1393–1406
doi: 10.1016/j.cell.2012.04.031
32 He,C., Sidoli, S., Warneford-Thomson,R., Tatomer,D. C. , Wilusz,J. E., Garcia, B. A. and Bonasio,R. (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells.Mol. Cell, 64, 416–430
doi: 10.1016/j.molcel.2016.09.034
33 Li,X., Liu,C. X., Xue,W., Zhang, Z., Jiang,S. , Yin,Q. F., Wei,J., Yao,R. W., Yang, L. and Chen,L. L. (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection.Mol. Cell, http://doi.org/10.1016/j.molcel.2017.05.023
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed