Latest issue

Nov 2024, Volume 15 Issue 11
    
  • Select all
  • HIGHLIGHT
    Jingjing Liu, Tao Zheng, Lingjie Xu, Zhicai Chen, Kunkun Zhang, Xiangxi Wang, Xiaoyu Xu, Yuhua Li, Yao Sun, Ling Zhu
  • Research Article
    Junpeng Gao, Mengya Liu, Minjie Lu, Yuxuan Zheng, Yan Wang, Jingwei Yang, Xiaohui Xue, Yun Liu, Fuchou Tang, Shuiyun Wang, Lei Song, Lu Wen, Jizheng Wang

    Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.

  • RESEARCH ARTICLE
    Yinghui Li, Xingchen Liu, Xue Sun, Hui Li, Shige Wang, Wotu Tian, Chen Xiang, Xuyuan Zhang, Jiajia Zheng, Haifang Wang, Liguo Zhang, Li Cao, Catherine C.L. Wong, Zhihua Liu

    Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease and Parkinson’s disease. Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.

  • RESEARCH ARTICLE
    Nini Wang, Shangda Yang, Yu Li, Fanglin Gou, Yanling Lv, Xiangnan Zhao, Yifei Wang, Chang Xu, Bin Zhou, Fang Dong, Zhenyu Ju, Tao Cheng, Hui Cheng

    The maintenance of hematopoietic stem cells (HSCs) is a complex process involving numerous cell-extrinsic and -intrinsic regulators. The first member of the cyclin-dependent kinase family of inhibitors to be identified, p21, has been reported to perform a wide range of critical biological functions, including cell cycle regulation, transcription, differentiation, and so on. Given the previous inconsistent results regarding the functions of p21 in HSCs in a p21-knockout mouse model, we employed p21-tdTomato (tdT) mice to further elucidate its role in HSCs during homeostasis. The results showed that p21-tdT+ HSCs exhibited increased self-renewal capacity compared to p21-tdT HSCs. Zbtb18, a transcriptional repressor, was upregulated in p21-tdT+ HSCs, and its knockdown significantly impaired the reconstitution capability of HSCs. Furthermore, p21 interacted with ZBTB18 to co-repress the expression of cKit in HSCs and thus regulated the self-renewal of HSCs. Our data provide novel insights into the physiological role and mechanisms of p21 in HSCs during homeostasis independent of its conventional role as a cell cycle inhibitor.

  • LETTER
    Ke-ran Li, Meng-Jia Huan, Jin Yao, Jia-jun Li, Yuan Cao, Suyu Wang, Mandar T. Naik, Yuan Fang, John Marshall, Chang-gong Lan, Cong Cao
  • CORRECTION