Modulation of the electronic states of perovskite SrCrO3 thin films through protonation via low-energy hydrogen plasma implantation approaches
Meng Wu, Shanquan Chen, Chuanwei Huang, Xing Ye, Haiping Zhou, Xiaochun Huang, Kelvin H. L. Zhang, Wensheng Yan, Lihua Zhang, Kisslinger Kim, Yingge Du, Scott Chambers, Jin-Cheng Zheng, Hui-Qiong Wang
Modulation of the electronic states of perovskite SrCrO3 thin films through protonation via low-energy hydrogen plasma implantation approaches
Hydrogenation of transition metal oxides offers a powerful platform to tailor physical functionalities as well as for potential applications in modern electronic technologies. An ideal nondestructive and efficient hydrogen incorporation approach is important for the realistic technological applications. We demonstrate the proton injection on SrCrO3 thin films via an efficient low-energy hydrogen plasma implantation experiments, without destroying the original lattice framework. Hydrogen ions accumulate largely at the interfacial regions with amorphous character which extend about one-third of the total thickness. The HxSrCrO3 (HSCO) thin films appear like exfoliated layers which however retain the fully strained state with distorted perovskite structure. Proton doping induces the change of Cr oxidation state from Cr4+ to Cr3+ in HSCO thin films and a transition from metallic to insulating phase. Our investigations suggest an attractive platform in manipulating the electronic phases in proton-based approaches and may offer a potential peeling off strategy for nanoscale devices through low-energy hydrogen plasma implantation approaches.
transition metal oxide thin film / metal–insulator transition / hydrogenation
[1] |
J. L. Zhang and G. C. Shan, Stacking control in graphenebased materials: A promising method for fascinating physical properties, Front. Phys. 14(2), 23301 (2019)
CrossRef
ADS
Google scholar
|
[2] |
T. Chatterji, S. Rols, and U. D. Wdowik, Dynamics of the phase-change material GeTe across the structural phase transition, Front. Phys. 14(2), 23601 (2019)
CrossRef
ADS
Google scholar
|
[3] |
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
CrossRef
ADS
Google scholar
|
[4] |
S. Q. Luo, J. F. Wang, B. Yang, and Y. B. Yuan, Recent advances in controlling the crystallization of twodimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)
CrossRef
ADS
Google scholar
|
[5] |
T.-H. Han, S. Tan, J. Xue, L. Meng, J.-W. Lee, and Y. Yang, Interface and defect engineering for metal halide perovskite optoelectronic devices, Adv. Mater. 1803515 (2019)
CrossRef
ADS
Google scholar
|
[6] |
M. R. Norman, The challenge of unconventional superconductivity, Science 332(6026), 196 (2011)
CrossRef
ADS
Google scholar
|
[7] |
M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70(4), 1039 (1998)
CrossRef
ADS
Google scholar
|
[8] |
J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2), 173 (2005)
CrossRef
ADS
Google scholar
|
[9] |
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)
CrossRef
ADS
Google scholar
|
[10] |
Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, and H. Kageyama, An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity, Nat. Mater. 11(6), 507 (2012)
CrossRef
ADS
Google scholar
|
[11] |
M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall, and F. L. Pratt, The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7, Science 295(5561), 1882 (2002)
|
[12] |
F. Denis Romero, A. Leach, J. S. Möller, F. Foronda, S. J. Blundell, and M. A. Hayward, Strontium vanadium oxide-hydrides: “Square-planar” two-electron phases, Angew. Chem. Int. Ed. 53(29), 7556 (2014)
CrossRef
ADS
Google scholar
|
[13] |
C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, and H. Kageyama, Direct synthesis of chromium perovskite oxyhydride with a high magnetictransition temperature, Angew. Chem. Int. Ed. 53(39), 10377 (2014)
CrossRef
ADS
Google scholar
|
[14] |
Y. Kobayashi, O. Hernandez, C. Tassel, and H. Kageyama, New chemistry of transition metal oxyhydrides, Sci. Technol. Adv. Mater. 18(1), 905 (2017)
CrossRef
ADS
Google scholar
|
[15] |
N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H. B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C. W. Nan, J. Wu, Y. Tokura, and P. Yu, Electric-field control of tri-state phase transformation with a selective dual-ion switch, Nature 546(7656), 124 (2017)
CrossRef
ADS
Google scholar
|
[16] |
M. Jo, H. J. Lee, C. Oh, H. Yoon, J. Y. Jo, and J. Son, Gate-induced massive and reversible phase transition of VO2 channels using solid-state proton electrolytes, Adv. Funct. Mater. 28(39), 1802003 (2018)
CrossRef
ADS
Google scholar
|
[17] |
H. Yoon, M. Choi, T. W. Lim, H. Kwon, K. Ihm, J. K. Kim, S. Y. Choi, and J. Son, Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films, Nat. Mater. 15(10), 1113 (2016)
CrossRef
ADS
Google scholar
|
[18] |
M. A. Hope, K. J. Griffith, B. Cui, F. Gao, S. E. Dutton, S. S. P. Parkin, and C. P. Grey, The role of ionic liquid breakdown in the electrochemical metallization of VO2: An NMR study of gating mechanisms and VO2 reduction, J. Am. Chem. Soc. 140(48), 16685 (2018)
CrossRef
ADS
Google scholar
|
[19] |
K. A. Smith, A. I. Savva, C. Deng, J. P. Wharry, S. Hwang, D. Su, Y. Wang, J. Gong, T. Xu, D. P. Butt, and H. Xiong, Effects of proton irradiation on structural and electrochemical charge storage properties of TiO2 nanotube electrodes for lithium-ion batteries, J. Mater. Chem. A 5(23), 11815 (2017)
CrossRef
ADS
Google scholar
|
[20] |
K. H. L. Zhang, P. V. Sushko, R. Colby, Y. Du, M. E. Bowden, and S. A. Chambers, Reversible nanostructuring of SrCrO3−d through oxidation and reduction at low temperature, Nat. Commun. 5(1), 4669 (2014)
CrossRef
ADS
Google scholar
|
[21] |
B. L. Chamberland, Preparation and properties of Sr-CrO3, Solid State Commun. 5(8), 663 (1967)
CrossRef
ADS
Google scholar
|
[22] |
J. S. Zhou, C. Q. Jin, Y. W. Long, L. X. Yang, and J. B. Goodenough, Anomalous electronic state in CaCrO3 and SrCrO3, Phys. Rev. Lett. 96(4), 046408 (2006)
CrossRef
ADS
Google scholar
|
[23] |
L. Ortega-San-Martin, A. J. Williams, J. Rodgers, J. P. Attfield, G. Heymann, and H. Huppertz, Microstrain sensitivity of orbital and electronic phase separation in Sr-CrO3, Phys. Rev. Lett. 99(25), 255701 (2007)
CrossRef
ADS
Google scholar
|
[24] |
K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shutthanandan, L. Qiao, G. Cao, Z. Gai, S. Sallis, L. Piper, and S. A. Chambers, Electronic and magnetic properties of epitaxial perovskite SrCrO3(001), J. Phys.: Condens. Matter 27(24), 245605 (2015)
CrossRef
ADS
Google scholar
|
[25] |
H. P. Zhou, X. Ye, W. Huang, M. Q. Wu, L. N. Mao, B. Yu, S. Xu, I. Levchenko, and K. Bazaka, Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in austere environments, ACS Appl. Mater. Interfaces 11(16), 15122 (2019)
CrossRef
ADS
Google scholar
|
[26] |
I. Levchenko, K. Bazaka, M. Keidar, S. Xu, and J. Fang, Hierarchical multicomponent inorganic metamaterials: Intrinsically driven self-assembly at the nanoscale, Adv. Mater. 30(2), 1702226 (2018)
CrossRef
ADS
Google scholar
|
[27] |
O. Baranov, I. Levchenko, J. M. Bell, J. W. M. Lim, S. Huang, L. Xu, B. Wang, D. U. B. Aussems, S. Xu, and K. Bazaka, From nanometre to millimetre: A range of capabilities for plasma-enabled surface functionalization and nanostructuring, Mater. Horiz. 5(5), 765 (2018)
CrossRef
ADS
Google scholar
|
[28] |
I. Levchenko, K. Bazaka, T. Belmonte, M. Keidar, and S. Xu, Advanced materials for next-generation spacecraft, Adv. Mater. 30(50), 1802201 (2018)
CrossRef
ADS
Google scholar
|
[29] |
I. Levchenko, S. Xu, G. Teel, D. Mariotti, M. L. R. Walker, and M. Keidar, Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials, Nat. Commun. 9(1), 879 (2018)
CrossRef
ADS
Google scholar
|
[30] |
I. Levchenko, M. Keidar, J. Cantrell, Y. L. Wu, H. Kuninaka, K. Bazaka, and S. Xu, Explore space using swarms of tiny satellites, Nature 562(7726), 185 (2018)
CrossRef
ADS
Google scholar
|
[31] |
H. P. Zhou, D. Y. Wei, S. Xu, S. Q. Xiao, L. X. Xu, S. Y. Huang, Y. N. Guo, S. Khan, and M. Xu, Crystalline silicon surface passivation by intrinsic silicon thin films deposited by low-frequency inductively coupled plasma, J. Appl. Phys. 112(1), 013708 (2012)
CrossRef
ADS
Google scholar
|
[32] |
M. Losurdo, P. Capezzuto, G. Bruno, and E. A. Irene, Chemistry and kinetics of the GaN formation by plasma nitridation of GaAs: An in situreal-time ellipsometric study, Phys. Rev. B 58(23), 15878 (1998)
CrossRef
ADS
Google scholar
|
[33] |
K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shutthanandan, S. Sallis, L. F. J. Piper, and S. A. Chambers, Hole-induced insulator-to-metal transition in La1−xSrxCrO3 epitaxial films, Phys. Rev. B 91(15), 155129 (2015)
CrossRef
ADS
Google scholar
|
[34] |
D. D. Sarma, K. Maiti, E. Vescovo, C. Carbone, W. Eberhardt, O. Rader, and W. Gudat, Investigation of holedoped insulating La1−xSrxCrO3 by soft-X-ray absorption spectroscopy, Phys. Rev. B 53(20), 13369 (1996)
CrossRef
ADS
Google scholar
|
[35] |
G. van der Laan, J. Zaanen, G. A. Sawatzky, R. Karnatak, and J. M. Esteva, Comparison of X-ray absorption with X-ray photoemission of nickel dihalides and NiO, Phys. Rev. B 33(6), 4253 (1986)
CrossRef
ADS
Google scholar
|
[36] |
M. W. Haverkort, M. Zwierzycki, and O. K. Andersen, Multiplet ligand-field theory using Wannier orbitals, Phys. Rev. B 85(16), 165113 (2012)
CrossRef
ADS
Google scholar
|
[37] |
M. W. Haverkort, Quanty- a quantum many body script language, 2016
|
[38] |
M. Wu, H. L. Xin, J. O. Wang, X. J. Li, X. B. Yuan, H. Zeng, J. C. Zheng, and H. Q. Wang, Investigation of the multiplet features of SrTiO3 in X-ray absorption spectra based on configuration interaction calculations, J. Synchrotron Radiat. 25(3), 777 (2018)
CrossRef
ADS
Google scholar
|
[39] |
M. Wu, J. C. Zheng, and H. Q. Wang, Investigation of the vanadium L23-edge X-ray absorption spectrum of SrVO3 using configuration interaction calculations: Multiplet, valence, and crystal-field effects, Phys. Rev. B 97(24), 245138 (2018)
CrossRef
ADS
Google scholar
|
[40] |
T. Saitoh, A. E. Bocquet, T. Mizokawa, and A. Fujimori, Systematic variation of the electronic structure of 3 dtransition-metal compounds, Phys. Rev. B 52(11), 7934 (1995)
CrossRef
ADS
Google scholar
|
[41] |
A. E. Bocquet, T. Mizokawa, K. Morikawa, A. Fujimori, S. R. Barman, K. Maiti, D. D. Sarma, Y. Tokura, and M. Onoda, Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra, Phys. Rev. B 53(3), 1161 (1996)
CrossRef
ADS
Google scholar
|
[42] |
J. Suntivich, W. T. Hong, Y. L. Lee, J. M. Rondinelli, W. Yang, J. B. Goodenough, B. Dabrowski, J. W. Freeland, and Y. Shao-Horn, Estimating hybridization of transition metal and oxygen states in perovskites from OK-edge Xray absorption spectroscopy, J. Phys. Chem. C 118(4), 1856 (2014)
CrossRef
ADS
Google scholar
|
[43] |
X. Liu, Y. J. Wang, B. Barbiellini, H. Hafiz, S. Basak, J. Liu, T. Richardson, G. Shu, F. Chou, T. C. Weng, D. Nordlund, D. Sokaras, B. Moritz, T. P. Devereaux, R. Qiao, Y. D. Chuang, A. Bansil, Z. Hussain, and W. Yang, Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation, Phys. Chem. Chem. Phys. 17(39), 26369 (2015)
CrossRef
ADS
Google scholar
|
[44] |
Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, D. D. Tsuchiya, M. Fong, and S. Ramanathan, Strongly correlated perovskite fuel cells, Nature 534(7606), 231 (2016)
CrossRef
ADS
Google scholar
|
[45] |
S. J. Li, Y. T. Zhou, X. Kang, D. X. Liu, L. Gu, Q. H. Zhang, J. M. Yan, and Q. Jiang, A simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid, Adv. Mater. 31(15), 1806781 (2019)
CrossRef
ADS
Google scholar
|
[46] |
I. Abdelwahab, P. Dichtl, G. Grinblat, K. Leng, X. Chi, I. H. Park, M. P. Nielsen, R. F. Oulton, K. P. Loh, and S. A. Maier, Giant and tunable optical nonlinearity in singlecrystalline 2D perovskites due to excitonic and plasma effects, Adv. Mater. 31(29), 1902685 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |