Epitaxial growth of highly strained antimonene on Ag(111)

Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang

PDF(4460 KB)
PDF(4460 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138106. DOI: 10.1007/s11467-018-0757-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Epitaxial growth of highly strained antimonene on Ag(111)

Author information +
History +

Abstract

The synthesis of antimonene, which is a promising group-V 2D material for both fundamental studies and technological applications, remains highly challenging. Thus far, it has been synthesized only by exfoliation or growth on a few substrates. In this study, we show that thin layers of antimonene can be grown on Ag(111) by molecular beam epitaxy. High-resolution scanning tunneling microscopy combined with theoretical calculations revealed that the submonolayer Sb deposited on a Ag(111) surface forms a layer of AgSb2 surface alloy upon annealing. Further deposition of Sb on the AgSb2 surface alloy causes an epitaxial layer of Sb to form, which is identified as antimonene with a buckled honeycomb structure. More interestingly, the lattice constant of the epitaxial antimonene (5 Å) is much larger than that of freestanding antimonene, indicating a high tensile strain of more than 20%. This kind of large strain is expected to make the antimonene a highly promising candidate for roomtemperature quantum spin Hall material.

Keywords

scanning tunneling microscope / antimonene / density functional theory

Cite this article

Download citation ▾
Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111). Front. Phys., 2018, 13(3): 138106 https://doi.org/10.1007/s11467-018-0757-3

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
Z. Zhu and D. Tománek, Semiconducting layered blue phosphorus: A computational study, Phys. Rev. Lett. 112(17), 176802 (2014)
CrossRef ADS Google scholar
[3]
S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. 127(10), 3155 (2015)
CrossRef ADS Google scholar
[4]
L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, H. Lv, J. Shi, and X. Tang, Thermoelectric properties of a monolayer bismuth, J. Phys. Chem. C 118(2), 904 (2014)
CrossRef ADS Google scholar
[5]
S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
CrossRef ADS Google scholar
[6]
G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. Iannaccone, and G. Fiori, Performance of arsenene and antimonene double-gate MOSFETs from first principles, Nat. Commun. 7, 12585 (2016)
CrossRef ADS Google scholar
[7]
X. P. Chen, Q. Yang, R. S. Meng, J. K. Jiang, Q. H. Liang, C. J. Tan, and X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructures, J. Mater. Chem. C 4(23), 5434 (2016)
CrossRef ADS Google scholar
[8]
M. Zhao, X. Zhang, and L. Li, Strain-driven band inversion and topological aspects in antimonene, Sci. Rep. 5(1), 16108 (2015)
CrossRef ADS Google scholar
[9]
F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science 357(6348), 287 (2017)
CrossRef ADS Google scholar
[10]
P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, and F. Zamora, Antimonene: Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6515 (2016)
CrossRef ADS Google scholar
[11]
C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gómez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellán, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)
CrossRef ADS Google scholar
[12]
J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7, 13352 (2016)
CrossRef ADS Google scholar
[13]
X. Wu, Y. Shao, H. Liu, Z. Feng, Y. L. Wang, J. T. Sun, C. Liu, J. O. Wang, Z. L. Liu, S. Y. Zhu, Y. Q. Wang, S. X. Du, Y. G. Shi, K. Ibrahim, and H. J. Gao, Epitaxial growth and air-stability of monolayer antimonene on PdTe2, Adv. Mater. 29(11), 1605407 (2017)
CrossRef ADS Google scholar
[14]
M. Fortin-Deschênes, O. Waller, T. O. Menteş, A. Locatelli, S. Mukherjee, F. Genuzio, P. L. Levesque, A. Hébert, R. Martel, and O. Moutanabbir, Synthesis of antimonene on germanium, Nano Lett. 17(8), 4970 (2017)
CrossRef ADS Google scholar
[15]
G. Kresse and J. Hafner, Ab initio molecular dynamics of liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[16]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[17]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[18]
T. C. Q. Noakes, D. A. Hutt, C. F. McConville, and D. P. Woodruff, Structural investigation of ordered Sb adsorption phases on Ag(111) using coaxial impact collision ion scattering spectroscopy, Surf. Sci. 372(1–3), 117 (1997)
CrossRef ADS Google scholar
[19]
L. Moreschini, A. Bendounan, I. Gierz, C. R. Ast, H. Mirhosseini, H. Höchst, K. Kern, J. Henk, A. Ernst, S. Ostanin, F. Reinert, and M. Grioni, Assessing the atomic contribution to the Rashba spin-orbit splitting in surface alloys: Sb/Ag(111), Phys. Rev. B 79(7), 075424 (2009)
CrossRef ADS Google scholar
[20]
I. Gierz, B. Stadtmüller, J. Vuorinen, M. Lindroos, F. Meier, J. H. Dil, K. Kern, and C. R. Ast, Structural influence on the Rashba-type spin splitting in surface alloys, Phys. Rev. B 81(24), 245430 (2010)
CrossRef ADS Google scholar
[21]
G. Wang, R. Pandey, and S. P. Karna, Atomically thin group V elemental films: Theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces 7(21), 11490 (2015)
CrossRef ADS Google scholar
[22]
L. Kou, Y. Ma, X. Tan, T. Frauenheim, A. Du, and S. Smith, Structural and electronic properties of layered arsenic and antimony arsenide, J. Phys. Chem. C 119(12), 6918 (2015)
CrossRef ADS Google scholar
[23]
J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio and G. L. Lay, Large area planar stanene epitaxially grown on Ag(111), 2D Mater. 5, 025002 (2018)

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4460 KB)

Accesses

Citations

Detail

Sections
Recommended

/