Exotic ferromagnetism in the two-dimensional quantum material C3N

Wen-Cheng Huang, Wei Li, Xiaosong Liu

PDF(20122 KB)
PDF(20122 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137104. DOI: 10.1007/s11467-017-0741-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Exotic ferromagnetism in the two-dimensional quantum material C3N

Author information +
History +

Abstract

The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator–ferromagnet transition by tuning an external electric field.

Keywords

quantum material / ferromagnetism

Cite this article

Download citation ▾
Wen-Cheng Huang, Wei Li, Xiaosong Liu. Exotic ferromagnetism in the two-dimensional quantum material C3N. Front. Phys., 2018, 13(2): 137104 https://doi.org/10.1007/s11467-017-0741-3

References

[1]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[2]
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magneto transport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
CrossRef ADS Google scholar
[3]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[4]
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Photoluminescence from chemically exfoliated MoS2, Nano Lett. 11(12), 5111 (2011)
CrossRef ADS Google scholar
[5]
J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, High mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)
CrossRef ADS Google scholar
[6]
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
CrossRef ADS Google scholar
[7]
K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, A role for graphene in silicon-based semiconductor devices, Nature 479(7373), 338 (2011)
CrossRef ADS Google scholar
[8]
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef ADS Google scholar
[9]
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, topgated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
CrossRef ADS Google scholar
[10]
Y. Feng, X. Yao, M. Wang, Z. Hu, X. Luo, H. T. Wang, and L. Zhang, The atomic structures of carbon nitride sheets for cathode oxygen reduction catalysis, J. Chem. Phys. 138(16), 164706 (2013)
CrossRef ADS Google scholar
[11]
H. J. Xiang, B. Huang, Z. Y. Li, S. H. Wei, J. L. Yang, and X. G. Gong, Ordered semiconducting nitrogengraphene alloys, Phys. Rev. X 2(1), 011003 (2012)
CrossRef ADS Google scholar
[12]
J. Mahmooda, E. K. Leea, M. Jungc, D. Shind, H. J. Choia, J. M. Seoa, S. M. Junga, D. Kimd, F. Lia, M. S. Lahd, N. Parkd, H. J. Shinc, J. H. Ohb, and J. B. Baek, Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state, Proc. Natl. Acad. Sci. USA 113, 7417 (2016)
CrossRef ADS Google scholar
[13]
S. Yang, W. Li, C. Ye, G. Wang, H. Tian, C. Zhu, P. He, G. Ding, X. Xie, Y. Liu, Y. Lifshitz, S. T. Lee, Z. Kang, and M. Jiang, C3N-A2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties, Adv. Mater. 29(16), 1605625 (2017)
CrossRef ADS Google scholar
[14]
P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, World Scientific, 1999
CrossRef ADS Google scholar
[15]
M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96(1), 99 (1954)
CrossRef ADS Google scholar
[16]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[17]
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef ADS Google scholar
[18]
J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244 (1992)
CrossRef ADS Google scholar
[19]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[20]
F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71(11), 809 (1947)
CrossRef ADS Google scholar
[21]
See Supplemental Material in detail.
[22]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[23]
W. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Firstprinciples calculations of the electronic structure of iron-pnictide EuFe2(As, P)2 superconductors: Evidence for antiferromagnetic spin order, Phys. Rev. B 86(15), 155119 (2012)
CrossRef ADS Google scholar
[24]
N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56(20), 12847 (1997)
CrossRef ADS Google scholar
[25]
A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
CrossRef ADS Google scholar
[26]
X. G. Xu and W. Li, Electronic and magnetic structures of ternary iron telluride KFe2Te2, Front. Phys. 10(4), 107403 (2015)
CrossRef ADS Google scholar
[27]
K. Hu, B. Gao, Q. Ji, Y. Ma, W. Li, X. Xu, H. Zhang, G. Mu, F. Huang, C. Cai, X. Xie, and M. Jiang, Effects of electron correlation, electron-phonon coupling, and spin-orbit coupling on the isovalent Pd-substituted superconductor SrPt3P, Phys. Rev. B 93(21), 214510 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(20122 KB)

Accesses

Citations

Detail

Sections
Recommended

/