Early-stage nucleation of manganese sulfide particle and its processing evolution in Fe--3wt.%Si alloys

Wei GUO , Li MENG , Hongcai WANG , Guochun YAN , Weimin MAO

Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 66 -72.

PDF (1914KB)
Front. Mater. Sci. ›› 2016, Vol. 10 ›› Issue (1) : 66 -72. DOI: 10.1007/s11706-016-0325-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Early-stage nucleation of manganese sulfide particle and its processing evolution in Fe--3wt.%Si alloys

Author information +
History +
PDF (1914KB)

Abstract

Manganese sulfide is often referred to as one of important inhibitors in grain-oriented electrical steels, which is of great importance to yield strong Goss texture. However, the early stage of nucleation for such inhibitors and their evolution during the processing has not been well understood. In present work we selected a Fe--3.12wt.%Si--0.11wt.%Mn--0.021wt.%S model system and used FE-SEM and atom probe tomography (APT) to investigate the precipitation behavior of MnS inhibitors at near atomic scale. It was found that the Si--S enriched clusters with sizes of 5--15 nm were formed close to the MnS particles. The density of inhibitors decreased after large pseudo-plane-strain compression because of the effect of dislocation motion, and then slightly increased again when sample was aged at 200°C for 48 h. The dislocations and grain boundaries can act as fast diffusion paths and assist the reemergence of Si--S enriched clusters.

Keywords

manganese sulfide (MnS) / inhibitor / nucleation / precipitation / grain-oriented electrical steels

Cite this article

Download citation ▾
Wei GUO, Li MENG, Hongcai WANG, Guochun YAN, Weimin MAO. Early-stage nucleation of manganese sulfide particle and its processing evolution in Fe--3wt.%Si alloys. Front. Mater. Sci., 2016, 10(1): 66-72 DOI:10.1007/s11706-016-0325-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernier NXhoffer CVan De Putte T. Structure analysis of aluminum silicon manganese nitride precipitates formed in grain-oriented electrical steels. Materials Characterization201386: 116–126

[2]

Homma HHutchinson B. Orientation dependence of secondary recrystallisation in silicon–iron. Acta Materialia200351(13): 3795–3805

[3]

Guo WMao WLi Y. Influence of intermediate annealing on final Goss texture formation in low temperature reheated Fe–3%Si steel. Materials Science and Engineering A2011528(3): 931–934

[4]

Guo WMao W M. Abnormal growth of Goss grains in grain-oriented electrical steels. Journal of Materials Science and Technology201026(8): 759–762

[5]

Mao WLi YYang P. Abnormal growth mechanisms of Goss grains in grain-oriented electrical steels. Materials Science Forum2011702–703: 585–590

[6]

Mao WGuo WLi Y. Growth process of Goss grains during secondary recrystallization of grain-oriented electrical steels. Steel Research International201081(12): 1117–1120

[7]

Kohler D. Promotion of cubic grain growth in 3% silicon iron by control of annealing atmosphere composition. Journal of Applied Physics196031(5): S408–S409

[8]

Chen NZaefferer SLahn L. Effects of topology on abnormal grain growth in silicon steel. Acta Materialia200351(6): 1755–1765

[9]

Heo N HChai K HNa J G. Correlation between interfacial segregation and surface-energy-induced selective grain growth in 3% silicon–iron alloy. Acta Materialia200048(11): 2901–2910

[10]

Dorner DZaefferer SLahn L. Overview of microstructure and microtexture development in grain-oriented silicon steel. Journal of Magnetism and Magnetic Materials2006304(2): 183–186

[11]

Miller M KRussell K F. Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy2007107(9): 761–766

[12]

Thompson KLawrence DLarson D JIn situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy2007107(2–3): 131–139

[13]

Bas PBostel ADeconihout B. A general protocol for the reconstruction of 3D atom probe data. Applied Surface Science199587–88: 298–304

[14]

Hellman O CSeidman D N. Measurement of the Gibbsian interfacial excess of solute at an interface of arbitrary geometry using three-dimensional atom probe microscopy. Materials Science and Engineering A2002327: 24–28

[15]

Oikawa H. Technology Reports. Tohoku University198348: 7–77

[16]

Arabczyk WMilitzer MMussig H J. Contribution of pipe diffusion to surface segregation kinetics. Surface Science1988198(1–2): 167–179

[17]

Sun W PMilitzer MJonas J J. Diffusion-controlled growth and coarsening of MnS during hot deformation. Metallurgical Transactions A: Physical Metallurgy and Materials Science199223(11): 3013–3023

[18]

Kaur W GKozma L. Handbook of Grain and Interface Boundary Diffusion Data. Stuttgart: Ziegler Press1989

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1914KB)

1159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/