Please wait a minute...

Frontiers of Materials Science

Front Mater Sci    2013, Vol. 7 Issue (1) : 62-68     DOI: 10.1007/s11706-013-0191-y
Calcium carbonate crystallization controlled by functional groups: A mini-review
Hua DENG1,2, Xing-Can SHEN2, Xiu-Mei WANG1, Chang DU3()
1. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China; 3. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
Download: PDF(259 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Various functional groups have been suggested to play essential roles on biomineralization of calcium carbonate (CaCO3) in natural system. 2D and 3D models of regularly arranged functional groups have been established to investigate their effect on CaCO3 crystallization. This mini-review summarizes the recent progress and the future development is prospected.

Keywords functional group      biomineralization      crystallization      CaCO3     
Corresponding Authors: DU Chang,   
Issue Date: 05 March 2013
 Cite this article:   
Hua DENG,Xing-Can SHEN,Xiu-Mei WANG, et al. Calcium carbonate crystallization controlled by functional groups: A mini-review[J]. Front Mater Sci, 2013, 7(1): 62-68.
E-mail this article
E-mail Alert
Articles by authors
Xing-Can SHEN
Xiu-Mei WANG
Chang DU
Fig.1  Schematic model of SAM by supporting alkanethiols on the gold substrate. 3D structure and geometry of the monolayer on Au (111). The example of a -NH terminated SAM is shown. (Reproduced with permission from Ref. [], Copyright 1999 American Chemical Society)
Research groupCa2+ concentration solutionsType of substratesCrystal products (phase/morphology)Refs.
S. Mannsupersaturated Ca(HCO3)2stearic acid monolayersvaterite/pseudo-hexagonal floret------[8]
Y.-T. Kim1 mmol/L CaCl2SAM on Au (n = 10)rhombohedral calcitesamorphous precipitates-amorphous phase(low density)spherulitic vaterites and some calcites--[21]
J. Aizenberg10 mmol/L CaCl2SAMcalcite (015)(SAM on Au,n = 15)calcite (0104)(SAM on Au,n = 22)----calcite (001)(SAM on Pb,n = 11)[6]
100 mmol/L CaCl2SAM on Agcalcite (012)(n = 15)------
W. Tremel10 mmol/L CaCl2, (22±3)°CSAM on Aucalcites(n = 10)vaterites and some calcites(n = 11)-mainly calcites(n = 10)mainly vaterites(n = 12)calcites and somevateritescalcites(n = 10)[7,22]
mainly vaterites (n = 15)vaterites and some calcites(n = 15)vaterites and some calcites(n = 16)calcites and some aragonite needles(n = 3)
10 mmol/L CaCl2, (45±2)°CSAM on Auaroganites and some calcites(n = 10)vaterites and calcites(n = 11)-aroganites and some calcites(n = 10)aroganites: calcites(1:1, n = 12)three polymorphs(n = 11)calcites(n = 10)
three polymorphs(n = 15)minly calcites(n = 15)three polymorphs(n = 16)aroganites & some vaterites and calcites(n = 3)
Q.-L. Feng20 mmol/L CaCl2carbonylated substratesvaterite/calcite co-existenceseparate calcite crystalscalcite aggregates----[5]
F.-Z. Cui1 mmol/L CaCl2SAM on Au (n = 11)calcite rhombohedra (104)floret-shaped vaterites (111)spheroidic vaterites (200)no crystals---[4]
5 mmol/L CaCl2uniform calcitesuniform calcitesmainly irregular calcitesmainly irregular calcites---
20 mmol/L CaCl2calcite clustersuniform calcitesthree polymorphsthreepolymorphs---
Tab.1  CaCO products formed on various functional group substrates
Fig.2  SEM images of CaCO crystal formed on SAMs in various ambiences: on -COOH SAM, [Ca] = 5 mmol/L; on -OH SAM, [Ca] = 5 mmol/L; on -NH SAM, [Ca] = 1 mmol/L; on -OH SAM, [Ca] =1 mmol/L.
1 Weiner S, Addadi L. Crystallization pathways in biomineralization. Annual Review of Materials Research , 2011, 41(1): 21–40
2 Politi Y, Arad T, Klein E, . Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science , 2004, 306(5699): 1161–1164
3 Addadi L, Raz S, Weiner S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials , 2003, 15(12): 959–970
4 Deng H, Wang X, Du C, . Combined effect of ion concentration and functional groups on the surface chemistry modulated CaCO3 crystallization. CrystEngComm , 2012, 14(20): 6647–6653
5 Ren D, Li Z, Gao Y, . Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization. Biomedical Materials , 2010, 5(5): 055009
6 Aizenberg J, Black A J, Whitesides G M. Control of crystal nucleation by patterned self-assembled monolayers. Nature , 1999, 398(6727): 495–498
7 Kuther J, Seshadri R, Knoll W, . Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiols on gold. Journal of Materials Chemistry , 1998, 8(3): 641–650
8 Mann S, Heywood B R, Rajam S, . Controlled crystallization of CaCO3 under stearic acid monolayers. Nature , 1988, 334(6184): 692–695
9 Chen Y, Xiao J, Wang Z, . Observation of an amorphous calcium carbonate precursor on a stearic acid monolayer formed during the biomimetic mineralization of CaCO3. Langmuir , 2009, 25(2): 1054–1059
10 Dey A, Bomans P H H, Müller F A, . The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nature Materials , 2010, 9(12): 1010–1014
11 Ren Y J, Zhang H, Huang H, . In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials , 2009, 30(6): 1036–1044
12 Sellers H, Ulman A, Shnidman Y, . Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society , 1993, 115(21): 9389–9401
13 Laibinis P E, Whitesides G M. ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities. Journal of the American Chemical Society , 1992, 114(6): 1990–1995
14 Strong L, Whitesides G M. Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir , 1988, 4(3): 546–558
15 Finklea H, Avery S, Lynch M, . Blocking oriented monolayers of alkyl mercaptans on gold electrodes. Langmuir , 1987, 3(3): 409–413
16 Aizenberg J, Black A J, Whitesides G M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. Journal of the American Chemical Society , 1999, 121(18): 4500–4509
17 Schreiber F. Structure and growth of self-assembling monolayers. Progress in Surface Science , 2000, 65(5–8): 151–257
18 Widrig C A, Alves C A, Porter M D. Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces. Journal of the American Chemical Society , 1991, 113(8): 2805–2810
19 Yu X L, Zhang B, Wang X M, . Cancer cell proliferation controlled by surface chemistry in its microenvironment. Frontiers of Materials Science , 2011, 5(4): 412–416
20 Aizenberg J. Self-assembled monolayers as templates for inorganic crystallization: a bio-inspired approach. In: Novoa J J, Braga D, Addadi L, eds. Engineering of Crystalline Materials Properties: State of the Art in Modeling, Design and Applications . Springer, 2008, 17 –32
21 Wurm D B, Brittain S T, Kim Y-T. Controlled nucleation of inorganic crystals on self-assembled monolayers. Journal of Materials Science Letters , 1996, 15(15): 1285–1287
22 Küther J, Tremel W. Template induced crystallization of biominerals on self-assembled monolayers of alkylthiols. Thin Solid Films , 1998, 327–329: 554–558
23 Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry . New York, USA: Oxford University Press, 2001
24 Mann S, Ozin G A. Sythesis of inorganic materials with complex form. Nature , 1996, 382(6589): 313–318
25 Mann S, Archibald D D, Didymus J M, . Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthe-sis. Science , 1993, 261(5126): 1286–1292
26 Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature , 1993, 365(6446): 499–505
27 Zhang Z, Xie Y, Xu X, . Transformation of amorphous calcium carbonate into aragonite. Journal of Crystal Growth , 2012, 343(1): 62–67
28 Guo Y, Tang H, Zhou Y, . Evolution mechanism of calcium carbonate in solution. Chinese Journal of Chemical Physics , 2010, 23(6): 731–737
29 Xu X R, Cai A H, Liu R, . The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate. Journal of Crystal Growth , 2008, 310(16): 3779– 3787
30 Politi Y, Metzler R A, Abrecht M, . Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(45): 17362–17366
31 Dai L, Cheng X, Gower L B. Transition bars during transformation of an amorphous calcium carbonate precursor. Chemistry of Materials , 2008, 20(22): 6917–6928
32 Cai A, Xu X, Pan H, . Direct synthesis of hollow vaterite nanospheres from amorphous calcium carbonate nanoparticles via phase transformation. Journal of Physical Chemistry C , 2008, 112(30): 11324–11330
33 Spanos N, Koutsoukos P G. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. Journal of Crystal Growth , 1998, 191(4): 783–790
34 Ogino T, Suzuki T, Sawada K. The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta , 1987, 51(10): 2757–2767
35 Hasse B, Ehrenberg H, Marxen J C, . Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chemistry- A European Journal , 2000, 6(20): 3679–3685
36 Becker A, Bismayer U, Epple M, . Structural characterisation of X-ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea Porcellio scaber. Dalton Transactions , 2003, (4): 551–555
37 Raiteri P, Gale J D. Water is the key to nonclassical nucleation of amorphous calcium carbonate. Journal of the American Chemical Society , 2010, 132(49): 17623–17634
38 Liu Z H, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O–CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+ CO2 H+ + HCO-3. Geochimica et Cosmochimica Acta , 1997, 61(14): 2879–2889
39 De Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth. Reviews in Mineralogy and Geochemistry , 2003, 54(1): 57–93
40 Dickerson M B, Sandhage K H, Naik R R. Protein- and peptide-directed syntheses of inorganic materials. Chemical Reviews , 2008, 108(11): 4935–4978
41 Meldrum F C, C?lfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews , 2008, 108(11): 4332–4432
42 Fang P A, Conway J F, Margolis H C, . Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America , 2011, 108(34): 14097–14102
43 Teng H H, Dove P M, De Yoreo J J. Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws. Geochimica et Cosmochimica Acta , 2000, 64(13): 2255–2266
44 Teng H H, Dove P M, Orme C A. Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science , 1998, 282(5389): 724–727
45 Frank F. The influence of dislocations on crystal growth. Discussions of the Faraday Society , 1949, 5: 48–54
46 Gebauer D, V?lkel A, C?lfen H. Stable prenucleation calcium carbonate clusters. Science , 2008, 322(5909): 1819–1822
47 C?lfen H. Biomineralization: A crystal-clear view. Nature Materials , 2010, 9(12): 960–961
48 Pouget E M, Bomans P H H, Goos J A C M, . The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science , 2009, 323(5920): 1455–1458
49 Meldrum F C, Sear R P. Now you see them. Science , 2008, 322(5909): 1802–1803
50 Stephens C J, Kim Y Y, Evans S D, . Early stages of crystallization of calcium carbonate revealed in picoliter droplets. Journal of the American Chemical Society , 2011, 133(14): 5210–5213
51 C?lfen H, Antonietti M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir , 1998, 14(3): 582–589
52 Neira-Carrillo A, Acevedo D F, Miras M C, . Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization. Langmuir , 2008, 24(21): 12496–12507
53 Jayaraman A, Subramanyam G, Sindhu S, . Biomimetic synthesis of calcium carbonate thin films using hydroxylated poly(methyl methacrylate) (PMMA) template. Crystal Growth & Design , 2007, 7(1): 142–146
54 Falini G, Manara S, Fermani S, . Polymeric admixtures effects on calcium carbonate crystallization: relevance to cement industries and biomineralization. CrystEngComm , 2007, 9(12): 1162–1170
55 Wang Q, Wang X M, Tian L L, . In situ remineralizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide. Soft Matter , 2011, 7(20): 9673–9680
Related articles from Frontiers Journals
[1] Su-Ju XU,Fu-Zhai CUI,Xiang-Dong KONG. Tumor-suppressor effects of chemical functional groups in an in vitro co-culture system[J]. Front. Mater. Sci., 2014, 8(2): 136-141.
[2] Lei YANG, Chao ZHONG. Advanced engineering and biomimetic materials for bone repair and regeneration[J]. Front Mater Sci, 2013, 7(4): 313-334.
[3] Rui-Bo ZHAO, Hua-Feng HAN, Shao DING, Ze-Hao LI, Xiang-Dong KONG. Effect of silk sericin on morphology and structure of calcium carbonate crystal[J]. Front Mater Sci, 2013, 7(2): 177-183.
[4] Su-Ju XU, Fu-Zhai CUI, Xiao-Long YU, Xiang-Dong KONG. Glioma cell line proliferation controlled by different chemical functional groups in vitro[J]. Front Mater Sci, 2013, 7(1): 69-75.
[5] Qiong ZHOU, Olga ALBERT, Hua DENG, Xiao-Long YU, Yang CAO, Jian-Bao LI, Xin HUANG. Effect of functional groups on the crystallization of ferric oxides/oxyhydroxides in suspension environment[J]. Front Mater Sci, 2012, 6(4): 297-303.
[6] Zhen-Hua CHEN, Xiu-Li REN, Hui-Hui ZHOU, Xu-Dong LI. The role of hyaluronic acid in biomineralization[J]. Front Mater Sci, 2012, 6(4): 283-296.
[7] Xiao-Hong WANG, Ute SCHLO?MACHER, Shun-Feng WANG, Heinz C. SCHR?DER, Matthias WIENS, Renato BATEL, Werner E. G. MüLLER. From nanoparticles via microtemplates and milliparticles to deep-sea nodules: biogenically driven mineral formation[J]. Front Mater Sci, 2012, 6(2): 97-115.
[8] Jing SUN, Lu YAO, Qiao-Ling ZHAO, Jin HUANG, Rui SONG, Zhi MA, Ling-Hao HE, Wei HUANG, Yong-Mei HAO. Modification on crystallization of poly(vinylidene fluoride) (PVDF) by solvent extraction of poly(methyl methacrylate) (PMMA) in PVDF/PMMA blends[J]. Front Mater Sci, 2011, 5(4): 388-400.
[9] Shun-Feng WANG, Xiao-Hong WANG, Lu GAN, Matthias WIENS, Heinz C. SCHR?DER, Werner E. G. MüLLER. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis][J]. Front Mater Sci, 2011, 5(3): 266-281.
[10] Cheng-Liang MIAO, Cheng-Jia SHANG, Guo-Dong ZHANG, Guo-Hui ZHU, Hatem ZUROB, Sundaresa SUBRAMANIAN, . Studies on softening kinetics of niobium microalloyed steel using stress relaxation technique[J]. Front. Mater. Sci., 2010, 4(2): 197-201.
[11] Ming-tao RUN, Zeng-kun WANG, Xin LI, Hong-chi ZHAO, . Crystal morphology, mechanical property and non-isothermal crystallization kinetics of poly(trimethylene terephthalate)/maleinized poly(ethylene-octene) copolymer binary blends[J]. Front. Mater. Sci., 2009, 3(4): 386-394.
[12] Jun-tao LI, Wei-dong MIAO, Yu-ling HU, Yan-jun ZHENG, Li-shan CUI. Amorphization and crystallization characteristics of TiNi shape memory alloys by severe plastic deformation[J]. Front Mater Sci Chin, 2009, 3(3): 325-328.
[13] Chuan-lin LIU, Xiao-jie CHENG, Jian-gao ZHAO, Xia QIAN, Cheng-hua GUO, De-jiao YU, Xi-guang CHEN. Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochitonrubrolineatus[J]. Front Mater Sci Chin, 2009, 3(3): 248-254.
[14] Yue-lian LIU, Klaas de GROOT, Ernst B. HUNZIKER. Biomimetic mineral coatings in dental and orthopaedic implantology[J]. Front Mater Sci Chin, 2009, 3(2): 154-162.
[15] Yu-rong CAI, Rui-kang TANG. Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process[J]. Front Mater Sci Chin, 2009, 3(2): 124-131.
Full text