Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (1) : 69-76     https://doi.org/10.1007/s12200-018-0775-3
RESEARCH ARTICLE |
Structure formation dynamics in drawing silica photonic crystal fibres
Wenyu WANG1(), Ghazal Fallah TAFTI1, Mingjie DING1, Yanhua LUO1, Yuan TIAN1, Shuai WANG1,2, Tomasz KARPISZ3, John CANNING1,4, Kevin COOK1,4, Gang-Ding PENG1()
1. Photonics and Optical Communications, School of Electrical Engineering and Telecommunications, University of New South Wales (UNSW) Sydney, 2052, Australia
2. Henan Key Laboratory of Laser and Opto-Electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052, China
3. Warsaw University of Technology, 00-665, Warsaw, Poland
4. interdisciplinary Photonics Laboratories (iPL), School of Electrical and Data Engineering, University of Technology Sydney, and School of Chemistry, The University of Sydney, NSW 2007 & 2006, Australia
Download: PDF(385 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The special features of photonic crystal fibres (PCFs) are achieved by their air hole structures. PCF structure is determined and formed by its origin preform design and drawing process. Therefore, structure formation dynamics in drawing PCF is important for the fabrication of PCF achieving desirable structure and thus the intended feature. This paper will investigate structure formation dynamics of PCF drawing in relation to key parameters and conditions, such as hole dimension, temperature, pressure, etc.

Keywords photonic crystal fibre (PCF)      structure formation      hole dimension      hole position      hole shift     
Corresponding Authors: Wenyu WANG,Gang-Ding PENG   
Online First Date: 26 March 2018    Issue Date: 02 April 2018
 Cite this article:   
Wenyu WANG,Ghazal Fallah TAFTI,Mingjie DING, et al. Structure formation dynamics in drawing silica photonic crystal fibres[J]. Front. Optoelectron., 2018, 11(1): 69-76.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-018-0775-3
http://journal.hep.com.cn/foe/EN/Y2018/V11/I1/69
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenyu WANG
Ghazal Fallah TAFTI
Mingjie DING
Yanhua LUO
Yuan TIAN
Shuai WANG
Tomasz KARPISZ
John CANNING
Kevin COOK
Gang-Ding PENG
Fig.1  Cross section images of a fabricated PCF (a) and its preform (c). The basic structural parameters are labeled in (b) for the PCF and (d) for the preform. The colors of (b) and (d) are calibrated for clearer views
Fig.2  Dependences of the scale factor R on the drawing pressure Pd for holes H1, H2 and H3. The results are shown for two furnace temperatures: (a) 1860°C and (b) 1870°C. Cross-section images of the preform and four PCFs with different drawing conditions are illustrated. The green dash lines represent R = 1. The optimal pressures of holes H1, H2 and H3 are marked as Po1, Po2, Po3
Fig.3  Dependences of relative position of the hole in PCF (Rf) upon the drawing pressure Pd for holes H1, H2 and H3 at different temperature: 1860°C (left part to the dotted line) and 1870°C (right part to the dotted line). The orange dash lines represent the relative position of holes in the preform (Rp). m is the slope of Rf to Pd
Fig.4  Dependence of scale factor R on the relative position of hole in the fibre Rf for holes H1, H2 and H3 at (a) Td = 1860°C and (b) Td = 1870°C. The orange dash lines represent the relative position of hole in the preform Rp. The green dash lines represent R = 1
Fig.5  Dependence of the slope s of the scale factor R to the relative position of hole in the fibre Rf upon the drawing pressure Pd for holes H1, H2 and H3 at different furnace temperatures
1 Buczynski R. Photonic crystal fibers. Acta Physica Polonica A, 2004, 106(2): 141–167
https://doi.org/10.12693/APhysPolA.106.141
2 Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963
https://doi.org/10.1364/OL.22.000961 pmid: 18185719
3 Stone J M. Photonic crystal fibres and their applications in the nonlinear regime. Dissertation for the Doctoral Degree. Bath: University of Bath, 2009
4 Michie A, Canning J, Lyytikäinen K, Aslund M, Digweed J. Temperature independent highly birefringent photonic crystal fibre. Optics Express, 2004, 12(21): 5160–5165
https://doi.org/10.1364/OPEX.12.005160 pmid: 19484072
5 Wadsworth W, Percival R, Bouwmans G, Knight J, Russell P. High power air-clad photonic crystal fibre laser. Optics Express, 2003, 11(1): 48–53
https://doi.org/10.1364/OE.11.000048 pmid: 19461704
6 Cook K, Canning J, Holdsworth J, Dewhurst C. Stable CW single-mode photonic crystal fiber DFB ring laser. Journal of Electronic Science and Technology of China, 2008, 6(4): 442–444
7 Groothoff N, Canning J, Ryan T, Lyytikainen K, Inglis H. Distributed feedback photonic crystal fibre (DFB-PCF) laser. Optics Express, 2005, 13(8): 2924–2930
https://doi.org/10.1364/OPEX.13.002924 pmid: 19495188
8 Chen T, Chen R, Jewart C, Zhang B, Cook K, Canning J, Chen K P. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing. Optics Letters, 2011, 36(18): 3542–3544
https://doi.org/10.1364/OL.36.003542 pmid: 21931384
9 Michie A, Canning J, Bassett I, Haywood J, Digweed K, Ashton B, Stevenson M, Digweed J, Lau A, Scandurra D. Spun elliptically birefringent photonic crystal fibre for current sensing. Measurement Science & Technology, 2007, 18(10): 3070–3074
https://doi.org/10.1088/0957-0233/18/10/S04
10 Cook K, Canning J, Holdsworth J. Birefringent Bragg gratings in highly-nonlinear photonic crystal fiber. Journal of Electronic Science and Technology of China, 2008, 6(4): 426–428
11 Lyytikäinen K. Numerical simulation of a specialty optical fibre drawing process. In: Proceedings of 27th Australian Conference on Optical Fibre Technology. Australia: Sydney, 2002, 134–136
12 Lyytikäinen K, Råback P, Ruokolainen J. Numerical simulation of a specialty optical fibre drawing process. In: Proceedings of 4th International ASME/JSME/KSME Symp. Computational Technologies for Fluid/Thermal/Chemical/Stress System with Industrial Applications. Canada: Vancouver, BC, 2002, 267–275
13 Wynne R M. A Fabrication process for microstructured optical fibers. Journal of Lightwave Technology, 2006, 24(11): 4304–4313
https://doi.org/10.1109/JLT.2006.884226
14 Fitt A D, Furusawa K, Monro T M, Please C P, Richardson D J. The mathematical modelling of capillary drawing for holey fibre manufacture. Journal of Engineering Mathematics, 2002, 43(2-4): 201–227
https://doi.org/10.1023/A:1020328606157
15 Fitt A D, Furusawa K, Monro T M, Please C P. Modeling the fabrication of hollow fibers: capillary drawing. Journal of Lightwave Technology, 2001, 19(12): 1924–1931
https://doi.org/10.1109/50.971686
16 Yarin A L, Gospodinov P, Roussinov V I. Stability loss and sensitivity in hollow fiber drawing. Physics of Fluids, 1994, 6(4): 1454–1463
https://doi.org/10.1063/1.868260
17 Gospodinov P, Yarinz A L. Draw resonance of optical microcapillaries in non-isothermal drawing. International Journal of Multiphase Flow, 1997, 23(5): 967–976
https://doi.org/10.1016/S0301-9322(97)00016-5
18 Wadsworth W, Witkowska A, Leon-Saval S, Birks T. Hole inflation and tapering of stock photonic crystal fibres. Optics Express, 2005, 13(17): 6541–6549
https://doi.org/10.1364/OPEX.13.006541 pmid: 19498669
19 Chen Y, Birks T A. Predicting hole sizes after fibre drawing without knowing the viscosity. Optical Materials Express, 2013, 3(3): 346–356
https://doi.org/10.1364/OME.3.000346
20 Lyytikäinen K, Zagari J, Barton G, Canning J. Heat transfer in a microstructured optical fibre preform. In: Proceedings of 11th International Plastic Optical Fibers Conference. Japan: Tokyo, 2002, 53–56
21 Lyytikäinen K, Zagari J, Barton G, Canning J. Heat transfer within a microstructured polymer optical fibre preform. Modelling and Simulation in Materials Science and Engineering, 2004, 12(3): S255
22 Lyytikainen K, Canning J, Digweed J, Zagari J. Geometry control of air-silica structured optical fibres using pressurisation. In: Proceedings of Microwave and Optoeletronics Conference. Brazil: Parana, 2003, 1001–1005
23 Lyytikäinen K J. Control of complex structural geometry in optical fibre drawing. Dissertation for the Doctoral Degree. Sydney: University of Sydney, 2004, 157–176
24 Chen Y. Hole control in photonic crystal fibres. Dissertation for the Doctoral Degree. Bath: University of Bath, 2013, 52–61
25 Guo T Y, Luo S Q, Li H L, Jian S L. Control of the fabrication parameters during the fabrication of photonic crystal fibers. Acta Physica Sinica, 2009, 58(9): 6308–6315
26 Lyytikainen K, Canning J, Digweed J, Zagari J. Geometry control of air-silica structured optical fibres. In: Proceedings of Optical Internet & Australian Conference on Optical Fibre Technology. Australia: Melbourne, 2003, 137–140
27 Wang W, Karpisz T, Tafti G, Canning J, Cook K, Luo Y, Peng G. Optimal pressure for tuning the lattice structure of photoinic crystal fibre. In: Proceedings of 3rd Australian and New Zealand Conference on Optics and Photonics. New Zealand: Queenstown, 2017, Paper 141
28 Tafti G, Wang W, Karpisz T, Canning J, Cook K, Luo Y, Wang S, Peng G. Fabrication and structure of H-Bi micro-structured optical fibres. In: Proceedings of 3rd Australian and New Zealand Conference on Optics and Photonics. New Zealand: Queenstown, 2017, Paper 142
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed