Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (1) : 77-91     https://doi.org/10.1007/s12200-018-0772-6
REVIEW ARTICLE |
On-chip silicon polarization and mode handling devices
Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU()
State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download: PDF(1064 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mode- and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications. On-chip silicon polarization and mode handling devices are key components in integrated mode- and polarization-division multiplexed photonic circuits. In this paper, we review our recent progresses on silicon-based polarization beam splitters, polarization splitters and rotators, mode (de)multiplexers, and mode and polarization selective switches. Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio, compact footprint and high fabrication tolerance. For on-chip mode multiplexing, we introduce a low loss and fabrication tolerant three-mode (de)multiplexer employing sub-wavelength grating structure. In analogy to a conventional wavelength selective switch in wavelength-division multiplexing, we demonstrate a selective switch that can route mode- and polarization-multiplexed signals.

Keywords silicon photonics      polarization beam splitter      polarization splitter and rotator      mode (de)multiplexer      selective switch     
Corresponding Authors: Yikai SU   
Online First Date: 28 March 2018    Issue Date: 02 April 2018
 Cite this article:   
Yong ZHANG,Yu HE,Qingming ZHU, et al. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-018-0772-6
http://journal.hep.com.cn/foe/EN/Y2018/V11/I1/77
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong ZHANG
Yu HE
Qingming ZHU
Xinhong JIANG
Xuhan Guo
Ciyuan QIU
Yikai SU
Fig.1  Schematic structure of the proposed GACC-based PBS. (a) 3D view; (b) top view. Simulated power distributions for (c) TE-polarized light inputs, (d) TM-polarized light inputs [37]
Fig.2  (a) SEM image of a fabricated GACC-based PBS with corrugations period number N = 80; (b) magnified micrograph of the gratings [37]
Fig.3  Measured transmission responses at the Cross and Thru ports for (a) TE-polarized and (b) TM-polarized light inputs, respectively [37]
Fig.4  (a) and (b) Schematic structure of the proposed bridged bent coupler PBS; (c) and (d) simulated power distributions in the PBS for the TE- and TM-polarized light inputs, respectively [40]
Fig.5  (a) SEM photo of a fabricated PBS based on a bridged bent directional coupler. Measured transmission responses at the Bar and Cross ports for (b) TE-polarized and (c) TM-polarized light inputs [40]
Fig.6  Schematic structure of the proposed silicon PSR based on a bent directional coupler. (a) 3D view; (b) top view. (c) and (d) Simulated power distributions at the plane of z = 0 for the TE- and TM-polarized light inputs, respectively. The four insets depict the mode distributions at the cross section of yz of Input and Output ports [45]
Fig.7  (a) SEM photo of a fabricated PSR based on a bent directional coupler; (b) magnified micrographs of the bent directional coupler. Measured and simulated transmission responses at the Cross and Thru ports for (c) TE-polarization and (d) TM-polarization [45]
Fig.8  Schematic structure of the SWG-PSR. (a) 3D view; (b) top view. Simulated power distributions of the SWG-PSR for (c) TE- and (d) TM-polarized light input, respectively [46]
Fig.9  (a) SEM photo of a fabricated PSR. Measured and simulated transmission responses for (b) TE-polarized and (c) TM-polarized light inputs, respectively. (d) Measured transmission responses of the PSRs with DWG of+50 and −50 nm [46]
Fig.10  Schematic structure of the proposed SWG-based mode multiplexer. (a) 3D view; (b) top view of the SWG-based directional coupler. Simulated power distributions of the SWG-based directional couplers for (c) TE1 and (d) TE2 modes multiplexing, respectively [54]
Fig.11  (a)−(c) SEM photos of a fabricated SWG-based three-mode (de)multiplexer; (d) measured transmission responses at output ports Oi (i = 1, 2, 3) with the light input from port I1, I2, I3, respectively [54]
Fig.12  Schematic structure of the 2 × 2 MPSS for 2 modes and 2 polarizations. As an example, the TE0 and TE1 channels of Input 1 and the TM0 and TM1 channels of Input 2 are routed to Output 1 and other channels are routed to Output 2 [62]
Fig.13  (a) Microscope photo of a fabricated MPSS chip; (b) magnified SEM images and microscope photos of a PBS, a mode multiplexer, waveguide crossings and a MZI switch [62]
Fig.14  Measured inter-modal crosstalk performances [62]
Fig.15  Measured intra-modal crosstalk performances [62]
Fig.16  (a) Experimental setup. ECL: external cavity laser. PC: polarization controller. MZM: Mach-Zehnder modulator. Tx-DSP: transmitter-digital signal processor. AWG: arbitrary waveform generator. EA: electrical amplifier. EDFA: erbium-doped fiber amplifier. VOA: variable optical attenuator. BPF: bandpass filter. PD: photodetector. DSO: digital storage oscilloscope. (b) BER versus channel. (c) BER curves versus received optical power [64]
1 Richardson D, Fini J, Nelson L. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
https://doi.org/10.1038/nphoton.2013.94
2 Winzer P J. Making spatial multiplexing a reality. Nature Photonics, 2014, 8(5): 345–348
https://doi.org/10.1038/nphoton.2014.58
3 Ding Y, Kamchevska V, Dalgaard K, Ye F, Asif R, Gross S, Withford M J, Galili M, Morioka T, Oxenløwe L K. Reconfigurable SDM switching using novel silicon photonic integrated circuit. Scientific Reports, 2016, 6(1): 39058
https://doi.org/10.1038/srep39058 pmid: 28000735
4 Bai N, Ip E, Huang Y K, Mateo E, Yaman F, Li M J, Bickham S, Ten S, Liñares J, Montero C, Moreno V, Prieto X, Tse V, Man Chung K, Lau A P T, Tam H Y, Lu C, Luo Y, Peng G D, Li G, Wang T. Mode-division multiplexed transmission with inline few-mode fiber amplifier. Optics Express, 2012, 20(3): 2668–2680
https://doi.org/10.1364/OE.20.002668 pmid: 22330504
5 Ryf R, Randel S, Fontaine N K, Montoliu M, Burrows E, Chandrasekhar S, Gnauck A H, Xie C, Essiambre R J, Winzer P, Delbue R, Pupalaikis P, Sureka A, Sun Y, Gruner-Nielsen L, Jensen R V, Lingle R. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5A.1
6 Thylén L, Wosinski L. Integrated photonics in the 21st century. Photonics Research, 2014, 2(2): 75–81
https://doi.org/10.1364/PRJ.2.000075
7 Soref R. Silicon photonics: a review of recent literature. Silicon, 2010, 2(1): 1–6
https://doi.org/10.1007/s12633-010-9034-y
8 Gondarenko A, Levy J S, Lipson M. High confinement micron-scale silicon nitride high Q ring resonator. Optics Express, 2009, 17(14): 11366–11370
https://doi.org/10.1364/OE.17.011366 pmid: 19582051
9 Chen P, Zhu Y, Shi Y, Dai D, He S. Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices. Optics Express, 2012, 20(20): 22531–22536
https://doi.org/10.1364/OE.20.022531 pmid: 23037402
10 Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
https://doi.org/10.1038/nphoton.2010.89
11 de Rossi A, Lauritano M, Combrié S, Tran Q V, Husko C. Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity. Physical Review A, 2009, 79(4): 043818
https://doi.org/10.1103/PhysRevA.79.043818
12 Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M. Integrated high quality factor lithium niobate microdisk resonators. Optics Express, 2014, 22(25): 30924–30933
https://doi.org/10.1364/OE.22.030924 pmid: 25607041
13 Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M. Roadmap on silicon photonics. Journal of Optics, 2016, 18(7): 073003
https://doi.org/10.1088/2040-8978/18/7/073003
14 Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35(5): 679–681
https://doi.org/10.1364/OL.35.000679 pmid: 20195317
15 Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9(2): 88–92
https://doi.org/10.1038/nphoton.2014.321
16 Zhang Y, Zeng C, Li D, Zhao X, Gao G, Yu J, Xia J. Enhanced light emission from Ge quantum dots in photonic crystal ring resonator. Optics Express, 2014, 22(10): 12248–12254
https://doi.org/10.1364/OE.22.012248 pmid: 24921343
17 Zhang Y, Zeng C, Zhang H, Li D, Gao G, Huang Q, Wang Y, Yu J, Xia J. Single-mode emission from Ge quantum dots in photonic crystal nanobeam cavity. IEEE Photonics Technology Letters, 2015, 27(9): 1026–1029
https://doi.org/10.1109/LPT.2015.2405555
18 Xu H, Xiao X, Li X, Hu Y, Li Z, Chu T, Yu Y, Yu J. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Optics Express, 2012, 20(14): 15093–15099
https://doi.org/10.1364/OE.20.015093 pmid: 22772206
19 Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307
https://doi.org/10.1364/OE.24.009295 pmid: 27137545
20 Liu B, Zhang Y, He Y, Jiang X, Peng J, Qiu C, Su Y. Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length. Optics Express, 2017, 25(10): 11359–11364
https://doi.org/10.1364/OE.25.011359 pmid: 28788818
21 Jiang X, Wu J, Yang Y, Pan T, Mao J, Liu B, Liu R, Zhang Y, Qiu C, Tremblay C, Su Y. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers. Optics Express, 2016, 24(3): 2183–2188
https://doi.org/10.1364/OE.24.002183 pmid: 26906794
22 Jiang X, Yang Y, Zhang H, Peng J, Zhang Y, Qiu C, Su Y. Design and experimental demonstration of a compact silicon photonic interleaver based on an interfering loop with wide spectral range. Journal of Lightwave Technology, 2017, 35(17): 3765–3771
https://doi.org/10.1109/JLT.2017.2720188
23 Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J. Silicon optical diode based on cascaded photonic crystal cavities. Optics Letters, 2014, 39(6): 1370–1373
https://doi.org/10.1364/OL.39.001370 pmid: 24690790
24 Chen G, Yu Y, Deng S, Liu L, Zhang X. Bandwidth improvement for germanium photodetector using wire bonding technology. Optics Express, 2015, 23(20): 25700–25706
https://doi.org/10.1364/OE.23.025700 pmid: 26480085
25 Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser & Photonics Reviews, 2014, 8(2): L18–L22
https://doi.org/10.1002/lpor.201300157
26 Dai D, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light, Science & Applications, 2012, 1(3): e1
https://doi.org/10.1038/lsa.2012.1
27 Doerr C R, Chen L, Vermeulen D, Nielsen T, Azemati S, Stulz S, McBrien G, Xu X M, Mikkelsen B, Givehchi M, Rasmussen C, Park S Y. Single-chip silicon photonics 100-Gb/s coherent transceiver. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2014, Th5C.1
28 Dong P, Liu X, Sethumadhavan C, Buhl L L, Aroca R, Baeyens Y, Chen Y K. 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5C.6
29 Rahman B, Somasiri N, Themistos C, Grattan K. Design of optical polarization splitters in a single-section deeply etched MMI waveguide. Applied Physics B, Lasers and Optics, 2001, 73(5–6): 613–618
https://doi.org/10.1007/s003400100680
30 Ding Y, Ou H, Peucheret C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 2013, 38(8): 1227–1229
https://doi.org/10.1364/OL.38.001227 pmid: 23595439
31 Ao X, Liu L, Wosinski L, He S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Applied Physics Letters, 2006, 89(17): 171115
https://doi.org/10.1063/1.2360201
32 Feng J, Zhou Z. Polarization beam splitter using a binary blazed grating coupler. Optics Letters, 2007, 32(12): 1662–1664
https://doi.org/10.1364/OL.32.001662 pmid: 17572739
33 Chu H S, Li E P, Bai P, Hegde R. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103
https://doi.org/10.1063/1.3437088
34 Guan X, Wu H, Shi Y, Dai D. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262
https://doi.org/10.1364/OL.39.000259 pmid: 24562121
35 Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express, 2006, 14(25): 12401–12408
https://doi.org/10.1364/OE.14.012401 pmid: 19529672
36 Dai D, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Optics Express, 2011, 19(19): 18614–18620
https://doi.org/10.1364/OE.19.018614 pmid: 21935230
37 Zhang Y, He Y, Wu J, Jiang X, Liu R, Qiu C, Jiang X, Yang J, Tremblay C, Su Y. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Optics Express, 2016, 24(6): 6586–6593
https://doi.org/10.1364/OE.24.006586 pmid: 27136848
38 Kim D W, Lee M H, Kim Y, Kim K H. Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Optics Express, 2015, 23(2): 998–1004
https://doi.org/10.1364/OE.23.000998 pmid: 25835859
39 Qiu H, Su Y, Yu P, Hu T, Yang J, Jiang X. Compact polarization splitter based on silicon grating-assisted couplers. Optics Letters, 2015, 40(9): 1885–1887
https://doi.org/10.1364/OL.40.001885 pmid: 25927739
40 Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y. Ultra-compact broadband silicon polarization beam splitter based on a bridged bent directional coupler. In: Proceedings of IEEE 13th International Conference on Group IV Photonics (GFP). IEEE Photonics Society, 2016, ThP18
41 Liu L, Ding Y, Yvind K, Hvam J M. Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Optics Letters, 2011, 36(7): 1059–1061
https://doi.org/10.1364/OL.36.001059 pmid: 21478982
42 Liu L, Ding Y, Yvind K, Hvam J M. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19(13): 12646–12651
https://doi.org/10.1364/OE.19.012646 pmid: 21716506
43 Tan K, Huang Y, Lo G Q, Yu C, Lee C. Ultra-broadband fabrication-tolerant polarization splitter and rotator. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.7
44 Wang J, Niu B, Sheng Z, Wu A, Li W, Wang X, Zou S, Qi M, Gan F. Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. Optics Express, 2014, 22(11): 13565–13571
https://doi.org/10.1364/OE.22.013565 pmid: 24921550
45 Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y, Soref R A. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photonics, 2016, 1(9): 091304
https://doi.org/10.1063/1.4965832
46 He Y, Zhang Y, Wang X, Liu B, Jiang X, Qiu C, Su Y, Soref R. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.6
47 Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 2012, 20(18): 20021–20027
https://doi.org/10.1364/OE.20.020021 pmid: 23037055
48 Xiong Y, Xu D X, Schmid J H, Cheben P, Janz S, Ye W N. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Optics Express, 2014, 22(14): 17458–17465
https://doi.org/10.1364/OE.22.017458 pmid: 25090559
49 Halir R, Bock P J, Cheben P, Ortega-Moñux A, Alonso-Ramos C, Schmid J H, Lapointe J, Xu D X, Wangüemert‐Pérez J G, Molina-Fernández Í, Janz S. Waveguide sub-wavelength structures: a review of principles and applications. Laser & Photonics Reviews, 2015, 9(1): 25–49
https://doi.org/10.1002/lpor.201400083
50 Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 2013, 38(17): 3468–3470
https://doi.org/10.1364/OL.38.003468 pmid: 23988986
51 Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Applied Optics, 2012, 51(15): 2778–2783
https://doi.org/10.1364/AO.51.002778 pmid: 22614579
52 Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Optics Letters, 2013, 38(9): 1422–1424
https://doi.org/10.1364/OL.38.001422 pmid: 23632505
53 Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M. WDM-compatible mode-division multiplexing on a silicon chip. Nature Communications, 2014, 5: 3069
pmid: 24423882
54 He Y, Zhang Y, Jiang X, Qiu C, Su Y. On-chip silicon three-mode (de)multiplexer employing subwavelength grating structure. In: Proceedings of 43nd European Conference on Optical Communication . ECOC, 2017, W2C.3
55 Doerr C R, Buhl L, Chen L, Dupuis N. Monolithic gridless 1 ´ 2 wavelength-selective switch in silicon. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2011, PDPC4
56 Stern B, Zhu X, Chen C P, Tzuang L D, Cardenas J, Bergman K, Lipson M. On-chip mode-division multiplexing switch. Optica, 2015, 2(6): 530–535
https://doi.org/10.1364/OPTICA.2.000530
57 Zhang Y, Zhu Q, He Y, Qiu C, Su Y, Soref R. Silicon 1 × 2 mode- and polarization-selective switch. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, W4E.2
58 Winzer P, Gnauck A, Konczykowska A, Jorge F, Dupuy J Y. Penalties from in-band crosstalk for advanced optical modulation formats. In: Proceedings of 37th European Conference and Exposition on Optical Communications. ECOC, 2011, Tu.5.B.7
59 Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 2013, 21(8): 10376–10382
https://doi.org/10.1364/OE.21.010376 pmid: 23609748
60 Downie J D, Ruffin A B. Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks. Journal of Lightwave Technology, 2003, 21(9): 1876–1886
https://doi.org/10.1109/JLT.2003.815499
61 Poon A W, Luo X, Xu F, Chen H. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proceedings of the IEEE, 2009, 97(7): 1216–1238
https://doi.org/10.1109/JPROC.2009.2014884
62 Zhang Y, He Y, Zhu Q, Qiu C, Su Y. On-chip silicon photonic 2×2 mode- and polarization-selective switch with low inter-modal crosstalk. Photonics Research, 2017, 5(5): 521–526
https://doi.org/10.1364/PRJ.5.000521
63 Fang Q, Song J F, Liow T Y, Cai H, Yu M B, Lo G Q, Kwong D L. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technology Letters, 2011, 23(8): 525–527
https://doi.org/10.1109/LPT.2011.2114336
Related articles from Frontiers Journals
[1] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[2] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[3] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[4] Christian CARBONI,Guifang LI. Novel applications of space-division multiplexing[J]. Front. Optoelectron., 2016, 9(2): 270-276.
[5] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[6] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[7] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[8] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed