Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (1) : 30-36
Dipole-fiber system: from single photon source to metadevices
Shaghik ATAKARAMIANS1(), Tanya M. MONRO2,3, Shahraam AFSHAR V.2,3
1. School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW 2052, Australia
2. Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide SA 5005, Australia
3. Laser Physics and Photonic Devices Laboratories, School of Engineering, University of South Australia, Mawson Lakes SA 5095, Australia
Download: PDF(308 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Radiation of an electric dipole (quantum emitter) in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances. Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices. We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application. We demonstrate that such a coupled system has a vast span of applications in nanophotonics; a single photon source, a high-quality factor sensor and the building block of metadevices.

Keywords dipole source      optical fibers      single photon source      whispering gallery modes      electric and magnetic response     
Corresponding Authors: Shaghik ATAKARAMIANS   
Online First Date: 28 March 2018    Issue Date: 02 April 2018
 Cite this article:   
Shaghik ATAKARAMIANS,Tanya M. MONRO,Shahraam AFSHAR V.. Dipole-fiber system: from single photon source to metadevices[J]. Front. Optoelectron., 2018, 11(1): 30-36.
E-mail this article
E-mail Alert
Articles by authors
Tanya M. MONRO
Shahraam AFSHAR V.
Fig.1  (a) Diamond optical fiber excited at the endface using 700 nm laser. (b) Background corrected measured second order autocorrelation function (blue circles) of a single NV-center embedded in the tellurite optical fiber. The solid red line represents a single exponential fit of the photon statistics Both parts adapted from Ref. [19]
Fig.2  Power captured into the guided modes vs. core diameter for a tellurite core and air clad fiber excited by an electric dipole emitting at 700 nm in the core center (red) and on the cladding (blue) interface. (a) Radially, (b) azimuthally, and (c) longitudinally oriented dipole. Power is normalized to the total power emitted in a bulk diamond material. All adapted from Ref. [18]
Fig.3  Normalized radiated power (total, TE and TM) of a coupled system when excitation is oriented (a) radially, (b) azimuthally, and (c) longitudinally. Power is normalized to the total power emitted in a bulk tellurite glass. The position of the resonances of 2D TE- and TM-WGMs is shown respectively with blue and red triangles. The insets represent the normalized magnetic field ((a) and (b)) and electric field ((c)) of (8,0) WGM for each case, which is the peak just before 1.2 mm in each case. Adapted from Ref. [22]
Fig.4  First two-three peaks of normalized radiated power (total in black, TE in blue and TM in red) of a coupled system when excitation is oriented (a) radially, (b) azimuthally, and (c) longitudinally. Power is normalized to the total power emitted in a bulk tellurite glass. The insets represent relative contribution of multipole coefficients ( l,m) in the total energy of the system. Adapted from Ref. [22]
1 Vahala K JOptical microcavities. Nature, 2003, 424(6950): 839–846 pmid: 12917698
2 Afshar V S, Henderson M R, Greentree A D, Gibson B C, Monro T MSelf-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. Optics Express, 2014, 22(9): 11301–11311 pmid: 24921827
3 Hall J M M, Reynolds T, Henderson M R, Riesen N, Monro T M, Afshar S.Unified theory of whispering gallery multilayer microspheres with single dipole or active layer sources. Optics Express, 2017, 25(6): 6192–6214 pmid: 28380973
4 Chew H, McNulty P J, Kerker M. Model for Raman and fluorescent scattering by molecules embedded in small particles. Physical Review A, 1976, 13(1): 396–404
5 Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. Shift of whispering-gallery modes in microspheres by protein adsorption. Optics Letters, 2003, 28(4): 272–274 pmid: 12653369
6 Quan H, Guo Z. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1-3): 231–243
7 Guo Z, Quan H, Pau S. Near-field gap effects on small microcavity whispering-gallery mode resonators. Journal of Physics D, Applied Physics, 2006, 39(24): 5133–5136
8 Imakita K, Shibata H, Fujii M, Hayashi S. Numerical analysis on the feasibility of a multi-layered dielectric sphere as a three-dimensional photonic crystal. Optics Express, 2013, 21(9): 10651–10658 pmid: 23669921
9 Li M, Wu X, Liu L, Xu L. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Optics Express, 2013, 21(14): 16908–16913 pmid: 23938539
10 Farnesi D, Barucci A, Righini G C, Conti G N, Soria S. Generation of hyper-parametric oscillations in silica microbubbles. Optics Letters, 2015, 40(19): 4508–4511 pmid: 26421568
11 Ruan Z, Fan S. Superscattering of light from subwavelength nanostructures. Physical Review Letters, 2010, 105(1): 013901 pmid: 20867445
12 Agio M. Optical antennas as nanoscale resonators. Nanoscale, 2012, 4(3): 692–706 pmid: 22175063
13 Novotny L, van Hulst N. Antennas for light. Nature Photonics, 2011, 5(2): 83–90
14 Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483
15 Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances. Optics and Photonics News, 2017, 28(1): 24–31
16 Zheludev N I, Kivshar Y S. From metamaterials to metadevices. Nature Materials, 2012, 11(11): 917–924 pmid: 23089997
17 Snyder A W, Love J. Optical Waveguide Theory. 1st ed. London: Chapman and Hall Ltd, 1983
18 Henderson M R, Afshar V. S, Greentree A D, Monro T M. Dipole emitters in fiber: interface effects, collection efficiency and optimization. Optics Express, 2011, 19(17): 16182–16194 pmid: 21934981
19 Henderson M R, Gibson B C, Ebendorff-Heidepriem H, Kuan K, Afshar V S, Orwa J O, Aharonovich I, Tomljenovic-Hanic S, Greentree A D, Prawer S, Monro T M. Diamond in tellurite glass: a new medium for quantum information. Advanced Materials, 2011, 23(25): 2806–2810 pmid: 21506173
20 Ebendorff-Heidepriem H, Ruan Y, Ji H, Greentree A D, Gibson B C, Monro T M. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4(12): 2608–2620
21 Ruan Y, Ji H, Johnson B C, Ohshima T, Greentree A D, Gibson B C, Monro T M, Ebendorff-Heidepriem H. Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5(1): 73–87
22 Atakaramians S, Miroshnichenko A E, Shadrivov I V, Mirzaei A, Monro T M. Kivshar Y S, Afshar V S. Strong magnetic response of optical nanofibers. ACS Photonics, 2016, 3(6): 972–978
23 Atakaramians S, Miroshnichenko A E, Shadrivov I V, Monro T M. Kivshar Y S, Afshar V. S. Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes. In: Proceedings of SPIE 9668, Micro+Nano Materials, Devices, and Systems, 2015, 96683J
24 Fussell D P, McPhedran R C, Martijn de Sterke C. Decay rate and level shift in a circular dielectric waveguide. Physical Review A, 2005, 71(1): 013815
25 Jackson J. Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc., 1998
Related articles from Frontiers Journals
[1] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[2] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
Full text