Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay

Zhefeng HU, Jianhui XU, Min HOU

PDF(625 KB)
PDF(625 KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (2) : 180-188. DOI: 10.1007/s12200-017-0711-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay

Author information +
History +

Abstract

An all-optical ultrawide band (UWB) doublet pulse train signal generator is proposed and theoretically simulated by utilizing an inverse wavelength conversion base on the cross-gain modulation (XGM) effect in a semiconductor optical amplifier (SOA) and controllable time delay in two optical delay lines (ODLs). The proposed scheme is not only optically switchable in the polarity of pulse by switching the polarity of input pulse but also tunable in signal pulse width and radiofrequency (RF) spectrum by tuning the ODLs.

Keywords

microwave photonics / ultrawide band (UWB) / tunable / switchable / semiconductor optical amplifier (SOA) / tunable time delay

Cite this article

Download citation ▾
Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay. Front. Optoelectron., 2017, 10(2): 180‒188 https://doi.org/10.1007/s12200-017-0711-y

References

[1]
Porcino D, Hirt W. Ultra-wideband radio technology: potential and challenges ahead. IEEE Communications Magazine, 2003, 41(7): 66–74
CrossRef Google scholar
[2]
Aiello G R, Rogerson G D. Ultra-wideband wireless systems. IEEE Microwave Magazine, 2003, 4(2): 36–47
CrossRef Google scholar
[3]
Zeng F, Yao J. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photonics Technology Letters, 2006, 18(19): 2062–2064
CrossRef Google scholar
[4]
Wang Q, Yao J. Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Optics Express, 2007, 15(22): 14667–14672
CrossRef Pubmed Google scholar
[5]
Wang Q, Yao J. An electrically switchable optical ultrawideband pulse generator. Journal of Lightwave Technology, 2007, 25(11): 3626–3633
CrossRef Google scholar
[6]
Shao J, Sun J. Filter-free ultra-wideband doublet pulses generation based on wavelength conversion and fiber dispersion effect. Optics Communications, 2012, 285(12): 2790–2793
CrossRef Google scholar
[7]
Shao J, Liu S. Photonic generation of filter-free ultrawideband monocycle and doublet signal using single semiconductor optical amplifier in counter-propagation scheme. Optical Engineering, 2016, 55(2): 026117
[8]
Hu Z, Sun J, Shao J, Zhang X. Filter-free optically switchable and tunable ultrawideband monocycle generation based on wavelength conversion and fiber dispersion. IEEE Photonics Technology Letters, 2010, 22(1): 42–44
CrossRef Google scholar
[9]
Hu Z, Sun J, Shao J. Simulation of optically switchable and tunable ultrawideband monocycle generation using semiconductor optical amplifier and optical delay line. In: Photonics and Optoelectronics Meetings (POEM) 2009. Proceedings of the Society for Photo-Instrumentation Engineers, 2009, 7516: 75160Q
[10]
Hu Z, Xu J, Hou M. Proposal for all-optical switchable and tunable ultrawideband monocycle generation utilizing SOA wavelength conversion and time delay. Photonic Sensors, 2017, 7(1): 66–71
CrossRef Google scholar
[11]
Hsieh J, Gong P, Lee S, Wu J. Improved dynamic characteristics on four-wave mixing wavelength conversion in light-holding SOAs. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 1187–1196
CrossRef Google scholar
[12]
Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61501088, 61307088, 61505020, and 61675040), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1633129), the Science and Technology Planning Project of Sichuan Province (No. MZ2016036), and the Fundamental Research Funds for the Central Universities (Nos. ZYGX2016J003, ZYGX2016J005, and ZYGX2016J009).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(625 KB)

Accesses

Citations

Detail

Sections
Recommended

/