Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2017, Vol. 10 Issue (1) : 18-30     DOI: 10.1007/s12200-017-0702-z
RESEARCH ARTICLE |
Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics
Chao CHEN1,David C. BOBELA2,Ye YANG2,Shuaicheng LU1,Kai ZENG1,Cong GE1,Bo YANG1,Liang GAO1,Yang ZHAO1,Matthew C. BEARD2,Jiang TANG1()
1. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
2. Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
Download: PDF(480 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Antimony selenide (Sb2Se3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb2Se3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb2Se3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. We believe such a comprehensive characterization of the basic physical properties of Sb2Se3 lays a solid foundation for further optimization of solar device performance.

Keywords antimony selenide (Sb2Se3)      mobility      lifetime      diffusion length      defects     
Corresponding Authors: Jiang TANG   
Just Accepted Date: 23 January 2017   Online First Date: 01 March 2017    Issue Date: 17 March 2017
 Cite this article:   
Chao CHEN,David C. BOBELA,Ye YANG, et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics[J]. Front. Optoelectron., 2017, 10(1): 18-30.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-017-0702-z
http://journal.hep.com.cn/foe/EN/Y2017/V10/I1/18
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao CHEN
David C. BOBELA
Ye YANG
Shuaicheng LU
Kai ZENG
Cong GE
Bo YANG
Liang GAO
Yang ZHAO
Matthew C. BEARD
Jiang TANG
Fig.1  Frequency dependent dielectric constant of Sb2Se3. The inset is the ilustration of the parallel plate capacitor with the interspcaing between Au electrodes as 1 mm
Fig.2  Estimation of anisotropic carrier mobilities. (a) X-ray diffraction patterns of [020]-, [120]- and [221]-Sb2Se3 films and (b−d) the corresponding cross-sectional SEM image. The transient current in TOF measurement of (e) [020]-Sb2Se3, (f) [120]-Sb2Se3 and (g) [221]-Sb2Se3 films after photoexcitation at time t = 0 in a bilogarithmic plot; the transit time τt is identified as the crossover point of two blue lines. The atomic configuration of (h) (020), (i) (120) and (j) (221) crystal plane of Sb2Se3. The red and green dash arrows represent the carrier hopping from one ribbon to the adjacent ones along a- and b-directions, respectively; the azure solid arrows stand for carrier transporting within the (Sb4Se6)n ribbons
Fig.3  (a) TA spectrum at various time delays after photoexcitation; (b) fs-TA kinetics averaged between 900 and 950 nm; (c) ns-TA edge kinetics averaged between 900 and 950 nm and the corresponding single exponential fitting (green lines) for Sb2Se3 film
Fig.4  Estimation of diffusion length by the bias dependent IQE method. (a) −ln(1−IQE) against depletion width (xd). The diffusion length and absorption coefficient were extracted by the intercept and slope of the linear fitting. (b) Comparison between the absorption coefficient derived from IQE+ CV (red dots line) and the measured value from transmittance (black line)
Fig.5  Defect characterization on [221] oriented Sb2Se3 by temperature dependent conductivity measurement. (a) Logarithmic dark conductivity versus 1000/T in the temperature range of 85 to 420 K; (b) ln(σT1/2) versus T?−1/4 in the temperature range of 85 to 160 K
Fig.6  Defect distribution in Sb2Se3 film. (a) Density of defect states of Sb2Se3 from admittance spectra. The defect peak at (0.095±0.008) eV could be perfectly fitted by Gaussian function as blue dash line; (b) Gaussian defect distribution in the band gap
Fig.7  Absorption coefficient (α) versus photon energy (hn). The Absorption coefficient of crystal and amorphous Sb2Se3 films were obtain from PDS spectrum
parameter value characterization method
er 18 CF, 2 MHz
29 CF, 2 kHz
μh/(cm2·V−1·s−1) a 1.17 TOF
b 0.69
c 2.59
μe/(cm2·V−1·s−1) c >16.9 Hall effect
τe/ns 67±7 TA
Le/mm [221] 0.29±0.03 bias IQE, low illumination
[001] 1.7±0.2 calculated, high illumination
nt/cm−3 6.9 × 1014 SCLC
1.3 × 1015 TAS
(Et−Ev)/eV 0.095±0.008 TAS
E1/eV 0.578±0.009 conductivity
E2/eV 0.111±0.005 conductivity
T0/K 2.31 × 106 conductivity
U0/meV c-Sb2Se3 38±3 (1.1−1.25 eV) PDS
c-Sb2Se3 129±7 (0.8−1.1 eV) PDS
a-Sb2Se3 79±2 (0.8−1.25 eV) PDS
Tab.1  Summary of physical parameters of Sb2Se3 reported in this paper
1 Petzelt J, Grigas J. Far infrared dielectric dispersion in Sb2S3, Bi2S3 and Sb2Se3 single crystals. Ferroelectrics, 1973, 5(1): 59–68
doi: 10.1080/00150197308235780
2 Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J. Solution-processed antimony selenide heterojunction solar cells. Advanced Energy Materials, 2014, 4(8): 1301846
doi: 10.1002/aenm.201301846
3 Chen C, Li W, Zhou Y, Chen C, Luo M, Liu X, Zeng K, Yang B, Zhang C, Han J, Tang J. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Applied Physics Letters, 2015, 107(4): 043905
doi: 10.1063/1.4927741
4 Ghosh G. The Sb-Se (antimony-selenium) system. Journal of Phase Equilibria, 1993, 14(6): 753–763
doi: 10.1007/BF02667889
5 Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415
doi: 10.1038/nphoton.2015.78
6 Luo M, Leng M, Liu X, Chen J, Chen C, Qin S, Tang J. Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 104(17): 173904
doi: 10.1063/1.4874878
7 Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J. Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Applied Materials & Interfaces, 2014, 6(13): 10687–10695
doi: 10.1021/am502427s pmid: 24922597
8 Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J. Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 105(8): 083905
doi: 10.1063/1.4894170
9 Liu X, Chen C, Wang L, Zhong J, Luo M, Chen J, Xue D J, Li D, Zhou Y, Tang J. Improving the performance of Sb2Se3 thin film solar cells over 4% by controlled addition of oxygen during film deposition. Progress in Photovoltaics: Research and Applications, 2015, 23(12): 1828–1836
doi: 10.1002/pip.2627
10 Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G. Overcoming efficiency limitations of SnS-based solar cells. Advanced Energy Materials, 2014, 4(15): 1400496
doi: 10.1002/aenm.201400496
11 Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%, (accessed: <Date>November, 2016</Date>)
12 First Solar pushes CdTe cell efficiency to record 22.1%, (accessed: <Date>November, 2016</Date>)
13 Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7): 1301465
doi: 10.1002/aenm.201301465
14 Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%. Applied Physics Letters, 2015, 106(21): 213902
doi: 10.1063/1.4921794
15 Black J, Conwell E M, Seigle L, Spencer C W. Electrical and optical properties of some M2V-BN3VI-B semiconductors. Journal of Physics and Chemistry of Solids, 1957, 2(3): 240–251
doi: 10.1016/0022-3697(57)90090-2
16 Benjamin S L, de Groot C H, Hector A L, Huang R, Koukharenko E, Levason W, Reid G. Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivity. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(2): 423–430
doi: 10.1039/C4TC02327G
17 Gilbert L R, Van Pelt B, Wood C. The thermal activation energy of crystalline Sb2Se3. Journal of Physics and Chemistry of Solids, 1974, 35(12): 1629–1632
doi: 10.1016/S0022-3697(74)80175-7
18 Ma J, Su T, Li M D, Du W, Huang J, Guan X, Phillips D L. How and when does an unusual and efficient photoredox reaction of 2-(1-hydroxyethyl) 9,10-anthraquinone occur? A combined time-resolved spectroscopic and DFT study. Journal of the American Chemical Society, 2012, 134(36): 14858–14868
doi: 10.1021/ja304441n pmid: 22909212
35 Jackson W B, Amer N M, Boccara A C, Fournier D. Photothermal deflection spectroscopy and detection. Applied Optics, 1981, 20(8): 1333–1344
doi: 10.1364/AO.20.001333 pmid: 20309309
19 Madelung O. Semiconductors: Data Handbook. New York: Springer Science & Business Media, 2012
20 Engel M, Kunze F, Lupascu D C, Benson N, Schmechel R. Reduced exciton binding energy in organic semiconductors: tailoring the Coulomb interaction. Physica Status Solidi (RRL)-Rapid Research Letters, 2012, 6(2): 68–70
21 Pavlica E, Bratina G. Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes. Applied Physics Letters, 2012, 101(9): 093304
doi: 10.1063/1.4742149
22 Haynes J R, Shockley W. The mobility and life of injected holes and electrons in Germanium. Physical Review, 1951, 81(5): 835–843
doi: 10.1103/PhysRev.81.835
23 Supplemental Material at http://link.springer.com/article/10.1007/s12200-017-0702-z for the detailed derivation of Eq. (3) and Hall mobility formula, biased IQE, PDS and SCLC, CV measurements, and the inter-atom distances in Sb2Se3
24 Yang Y, Rodríguez-Córdoba W, Lian T. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions. Journal of the American Chemical Society, 2011, 133(24): 9246–9249
doi: 10.1021/ja2033348 pmid: 21615168
25 Yang Y, Ostrowski D P, France R M, Zhu K, van de Lagemaat J, Luther J M, Beard M C. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photonics, 2016, 10(1): 53–59
doi: 10.1038/nphoton.2015.213
26 Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano, 2013, 7(2): 1072–1080
doi: 10.1021/nn303973r pmid: 23273148
27 Gokmen T, Gunawan O, Mitzi D B. Minority carrier diffusion length extraction in Cu2ZnSn(Se,S)4 solar cells. Journal of Applied Physics, 2013, 114(11): 114511
doi: 10.1063/1.4821841
28 Liu X X, Sites J R. Solar-cell collection efficiency and its variation with voltage. Journal of Applied Physics, 1994, 75(1): 577–581
doi: 10.1063/1.355842
29 Seto J Y W. The electrical properties of polycrystalline silicon films. Journal of Applied Physics, 1975, 46(12): 5247–5254
doi: 10.1063/1.321593
30 Liu X, Xiao X, Yang Y, Xue D J, Li D, Chen C, Lu S, Gao L, He Y, C B M, Wang G, Chen S, Tang J. Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Submitted to Progress in Photovoltaics: Research and Applications
31 Mott N F, Davis E A. Electronic Processes in Non-Crystalline Materials. Oxford: Oxford University Press, 2012
32 Guo B L, Chen Y H, Liu X J, Liu W C, Li A D. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells. AIP Advances, 2014, 4(9): 097115
doi: 10.1063/1.4895520
33 Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411–4420
doi: 10.1063/1.363401
34 Bube R H. Trap density determination by space-charge-limited currents. Journal of Applied Physics, 1962, 33(5): 1733–1737
doi: 10.1063/1.1728818
36 Ritter D, Weiser K. Suppression of interference fringes in absorption measurements on thin films. Optics Communications, 1986, 57(5): 336–338
doi: 10.1016/0030-4018(86)90270-1
37 Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 1953, 92(5): 1324
doi: 10.1103/PhysRev.92.1324
38 Tumelero M A, Faccio R, Pasa A A. Unraveling the native conduction of trichalcogenides and it ideal band alignment for new photovoltaic interfaces. The Journal of Physical Chemistry C, 2016, 120(3): 1390–1399
doi: 10.1021/acs.jpcc.5b10233
39 Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
doi: 10.1126/science.1243982 pmid: 24136964
40 Burst J M, Duenow J N, Albin D S, Colegrove E, Reese M O, Aguiar J A, Jiang C S, Patel M K, Al-Jassim M M, Kuciauskas D.CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nature Energy, 2016, 1: 16015
41 Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn (S, Se)4 solar cells. Advanced Energy Materials, 2013, 3(1): 34–38
doi: 10.1002/aenm.201200348
42 Repins I, Contreras M, Romero M, Yan Y, Metzger W, Li J, Johnston S, Egaas B, DeHart C, Scharf J, McCandless B E, Noufi R. Characterization of 19.9%-efficient CIGS absorbers. In: Proceedings of 33rd IEEE Photovoltaic Specialists Conference, 2008, 1–6
43 Jaramillo R, Sher M J, Ofori-Okai B K, Steinmann V, Yang C, Hartman K, Nelson K A, Lindenberg A M, Gordon R G, Buonassisi T. Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: advanced metrology for an early stage photovoltaic material. Journal of Applied Physics, 2016, 119(3): 035101
doi: 10.1063/1.4940157
44 Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou K W, Fischer A, Amassian A, Asbury J B, Sargent E H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials, 2011, 10(10): 765–771
doi: 10.1038/nmat3118 pmid: 21927006
45 Saparov B, Sun J P, Meng W, Xiao Z, Duan H S, Gunawan O, Shin D, Hill I G, Yan Y, Mitzi D B. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chemistry of Materials, 2016, 28(7): 2315–2322
doi: 10.1021/acs.chemmater.6b00433
46 Tai K F, Gunawan O, Kuwahara M, Chen S, Mhaisalkar S G, Huan C H A, Mitzi D B. Fill factor losses in Cu2ZnSn (SxSe1−x)4 solar cells: insights from physical and electrical characterization of devices and exfoliated films. Advanced Energy Materials, 2016, 6(3): 1501609
doi: 10.1002/aenm.201501609
47 Song H, Zhan X, Li D, Zhou Y, Yang B, Zeng K, Zhong J, Miao X, Tang J. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics. Solar Energy Materials and Solar Cells, 2016, 146: 1–7
48 Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths>175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
doi: 10.1126/science.aaa5760 pmid: 25636799
49 Ramakrishna Reddy K T, Koteswara Reddy N, Miles R W. Photovoltaic properties of SnS based solar cells. Solar Energy Materials and Solar Cells, 2006, 90(18–19): 3041–3046
doi: 10.1016/j.solmat.2006.06.012
50 Kim G H, García de Arquer F P, Yoon Y J, Lan X, Liu M, Voznyy O, Jagadamma L K, Abbas A S, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y, Sargent E H. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Letters, 2015, 15(11): 7691–7696
doi: 10.1021/acs.nanolett.5b03677 pmid: 26509283
[1] FOE-17002-of-CC_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed