Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 277-282     DOI: 10.1007/s12200-016-0614-3
RESEARCH ARTICLE |
Plasmonic light trapping for wavelength-scale silicon solar absorbers
Yinan ZHANG1,Min GU1,2,*()
1. Centre for Micro-Photonics, Faculty of Science, Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn VIC 3122, Australia
2. Artificial-Intelligence Nanophotonics Laboratory, School of Science, RMIT University, Melbourne VIC 3001, Australia
Download: PDF(683 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Light trapping is of critical importance for constructing high efficiency solar cells. In this paper, we first reviewed the progress we made on the plasmonic light trapping on Si wafer solar cells, including Al nanoparticle (NP)/SiNx hybrid plasmonic antireflection and the Ag NP light trapping for the long-wavelength light in ultrathin Si wafer solar cells. Then we numerically explored the maximum light absorption enhancement by a square array of Ag NPs located at the rear side of ultrathin solar cells with wavelength-scale Si thickness. Huge absorption enhancement is achieved at particular long wavelengths due to the excitation of the plasmon-coupled guided resonances. The photocurrent generated in 100 nm thick Si layers is 6.8 mA/cm2, representing an enhancement up to 92% when compared with that (3.55 mA/cm2) of the solar cells without the Ag NPs. This study provides the insights of plasmonic light trapping for ultrathin solar cells with wavelength-scale Si thickness.

Keywords solar cells      light trapping      plasmonic      ultrathin Si      wavelength-scale     
Corresponding Authors: Min GU   
Just Accepted Date: 18 February 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0614-3
http://journal.hep.com.cn/foe/EN/Y2016/V9/I2/277
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yinan ZHANG
Min GU
Fig.1  Schematic diagram of the plasmonic solar cell structure and the simulation geometry. PML: perfectly matched layer; PBC: periodic boundary condition
Fig.2  Optimization map of the photocurrent as a function of the NP diameter and the space between the NPs
Fig.3  Spectra of the absorption in the (a) Si layer, (b) SiO2 layer with Ag NPs, (c) Ag reflector and (d) the reflection for the solar cells integrated with the optimized Ag NPs, referenced with the solar cells without Ag NPs
Fig.4  Electrical field distributions for the solar cells without Ag NPs at the wavelengths of (a) 400 nm and (b) 800 nm and those for the solar cells with the optimized Ag NPs at the wavelengths of (c) 394 nm and (d) 634 nm. The Si layers are highlighted by the white dash lines (Scale bar: 250 nm)
Fig.5  Optimized photocurrent density as a function of the Si thickness for the solar cells with and without Ag NP integration. The photocurrent enhancement is shown for reference
1 Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
doi: 10.1038/nmat2629 pmid: 20168344
2 Gu M, Ouyang Z, Jia B, Stokes N, Chen X, Fahim N, Li X, Ventura M, Shi Z. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics, 2012, 1(3-4): 235–248
doi: 10.1515/nanoph-2012-0180
3 Zhang Y, Stokes N, Jia B, Fan S, Gu M. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Scientific Reports, 2014, 4: 4939
doi: 10.1038/srep04939 pmid: 24820403
4 Zhang Y, Ouyang Z, Stokes N, Jia B, Shi Z, Gu M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Applied Physics Letters, 2012, 100(15): 151101
doi: 10.1063/1.3703121
5 Zhang Y, Chen X, Ouyang Z, Lu H, Jia B, Shi Z, Gu M. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Optical Materials Express, 2013, 3(4): 489–495
doi: 10.1364/OME.3.000489
6 Zhang Y, Jia B, Ouyang Z, Gu M. Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. Journal of Applied Physics, 2014, 116(12): 124303
doi: 10.1063/1.4896486
7 Derkacs D, Lim S, Matheu P, Mar W, Yu E. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 2006, 89(9): 093103
doi: 10.1063/1.2336629
8 Eminian C, Haug F, Cubero O, Niquille X, Ballif C. Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Progress in Photovoltaics: Research and Applications, 2011, 19(3): 260–265
doi: 10.1002/pip.1015
9 Chen X, Jia B, Saha J K, Cai B, Stokes N, Qiao Q, Wang Y, Shi Z, Gu M. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Letters, 2012, 12(5): 2187–2192
doi: 10.1021/nl203463z pmid: 22300399
10 Lare M, Lenzmann F, Verschuuren M, Polman A. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells. Applied Physics Letters, 2012, 101(22): 221110
doi: 10.1063/1.4767997
11 Nakayama K, Tanabe K, Atwater H. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93(12): 121904
doi: 10.1063/1.2988288
12 Beck F, Mokkapati S, Catchpole K. Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles. Progress in Photovoltaics: Research and Applications, 2010, 18(7): 500–504
doi: 10.1002/pip.1006
13 Yang Y, Pillai S, Mehrvarz H, Kampwerth H, Ho-Baillie A, Green M. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Solar Energy Materials and Solar Cells, 2012, 101: 217–226
doi: 10.1016/j.solmat.2012.02.009
14 Temple T, Mahanama G, Reehal H, Bagnall D. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93(11): 1978–1985
doi: 10.1016/j.solmat.2009.07.014
15 Xu R, Wang X, Song L, Liu W, Ji A, Yang F, Li J. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 2012, 20(5): 5061–5068
doi: 10.1364/OE.20.005061 pmid: 22418311
16 Chen X, Jia B, Zhang Y, Gu M. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light, Science & Applications, 2013, 2(8): e92
doi: 10.1038/lsa.2013.48
17 Fahim N, Ouyang Z, Jia B, Zhang Y, Shi Z, Gu M. Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings. Applied Physics Letters, 2012, 101(26): 261102
doi: 10.1063/1.4773038
18 Fahim N, Ouyang Z, Zhang Y, Jia B, Shi Z, Gu M. Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Optical Materials Express, 2012, 2(2): 190–204
doi: 10.1364/OME.2.000190
19 Hägglund C, Zäch M, Petersson G, Kasemo B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Applied Physics Letters, 2008, 92(5): 053110
doi: 10.1063/1.2840676
20 Grandidier J, Callahan D M, Munday J N, Atwater H A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Advanced Materials, 2011, 23(10): 1272–1276
doi: 10.1002/adma.201004393 pmid: 21381129
21 Kang G, Park H, Shin D, Baek S, Choi M, Yu D H, Kim K, Padilla W J. Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures. Advanced Materials, 2013, 25(18): 2617–2623
doi: 10.1002/adma.201204596 pmid: 23529900
22 Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460
doi: 10.1038/nmat3921 pmid: 24751773
23 Spinelli P, Polman A. Light trapping in thin crystalline Si solar cells using surface Mie scatters. IEEE Journal of Photovoltaics, 2014, 4(2): 554–559
doi: 10.1109/JPHOTOV.2013.2292744
24 Kim I, Jeong D S, Lee W S, Kim W M, Lee T S, Lee D K, Song J H, Kim J K, Lee K S. Silicon nanodisk array design for effective light trapping in ultrathin c-Si. Optics Express, 2014, 22(Suppl 6): A1431–A1439
doi: 10.1364/OE.22.0A1431 pmid: 25607300
25 Wang K X, Yu Z, Liu V, Cui Y, Fan S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Letters, 2012, 12(3): 1616–1619
doi: 10.1021/nl204550q pmid: 22356436
26 Jeong S, McGehee M D, Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature Communications, 2013, 4: 2950
doi: 10.1038/ncomms3950 pmid: 24335845
27 Branham M S, Hsu W C, Yerci S, Loomis J, Boriskina S V, Hoard B R, Han S E, Chen G. 15.7% efficient 10-mm-thick crystalline silicon solar cells using periodic nanostructures. Advanced Materials, 2015, 27(13): 2182–2188
doi: 10.1002/adma.201405511 pmid: 25692399
28 Kwon J Y, Lee D H, Chitambar M, Maldonado S, Tuteja A, Boukai A. High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates. Nano Letters, 2012, 12(10): 5143–5147
doi: 10.1021/nl3020445 pmid: 22947134
29 Karakasoglu I, Wang K, Fan S. Optical-electronic analysis of the intrinsic behaviors of nanostructured ultrathin crystalline silicon solar cells. ACS Photonics, 2015, 2(7): 883–889
doi: 10.1021/acsphotonics.5b00081
30 Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491–17496
doi: 10.1073/pnas.1008296107 pmid: 20876131
31 FDTD solutions, Lumerical, Toronto, Canada
32 Palik E. Handbook of Optical Constants of Solids. London: Elsevier, 1988
33 Green M. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305–1310
doi: 10.1016/j.solmat.2008.06.009
Related articles from Frontiers Journals
[1] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[2] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[3] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[4] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[5] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[6] Xihua WANG. Recent progress in colloidal quantum dot photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 241-251.
[7] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[8] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[9] Xiaowei GUAN,Hao WU,Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Front. Optoelectron., 2014, 7(3): 300-319.
[10] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[11] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[12] Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 373-385.
[13] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
[14] Yun-Qing CAO, Xin XU, Shu-Xin LI, Wei LI, Jun XU, Kunji CHEN. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness[J]. Front Optoelec, 2013, 6(2): 228-233.
[15] Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(4): 371-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed