Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 123-137     DOI: 10.1007/s12200-016-0612-5
Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission
Daojun XUE1,Shaohua YU1,*(),Qi YANG1,Nan CHI2,Lan RAO3,Xiangjun XIN3,Wei LI4,Songnian FU5,Sheng CUI5,Demin LIU5,Zhuo LI6,Aijun WEN6,Chongxiu YU3,Xinmei WANG6
1. State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074, China
2. School of Information Science and Technology, Fudan University, Shanghai 200433, China
3. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
4. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
5. School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
6. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710126, China
Download: PDF(3262 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Ultra-high-speed, ultra-large-capacity and ultra-long-haul (3U) are the forever pursuit of optical communication. As a new mode of optical communication, 3U transmission can greatly promote next generation optical internet and broadband mobile communication network development and technological progress, therefore it has become the focus of international high-tech intellectual property competition ground. This paper introduces the scientific problems, key technologies and important achievements in 3U transmission research.

Keywords ultra-high-speed      ultra-large-capacity      ultra-long-haul      optical transmission      high spectral efficiency      parametric amplification      dispersion management     
Corresponding Authors: Shaohua YU   
Just Accepted Date: 22 February 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Daojun XUE,Shaohua YU,Qi YANG, et al. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
E-mail this article
E-mail Alert
Articles by authors
Daojun XUE
Shaohua YU
Xiangjun XIN
Wei LI
Songnian FU
Sheng CUI
Demin LIU
Zhuo LI
Aijun WEN
Chongxiu YU
Xinmei WANG
Fig.1  General structure and topics of the project
Fig.2  Comparison of different channel multiplexing schemes
Fig.3  (a) Main DSP blocks for MMEQ based on CMMA and modified carrier recovery scheme for the super-Nyquist filtering 9-QAM like QDB signal; (b) DSP principle for 9-QAM signal recovery; (c) benefit of proposed MMEQ with better performance of noise and crosstalk suppression [10]
Fig.4  Experimental setup of the FOPA. (a) FOPA diagram; (b) reflection power of the HNLF before and after suppression technique used; (c) ON-OFF gain of the FOPA; (d) experimental platform [28]
Fig.5  Gain and noise figure characteristics of the FOPA as b2 (a) and b4 (b) considered
Fig.6  Characteristics and structure of PCF. (a) Dispersion, effective mode area and structure of PCF; (b) hollow PCF and (c) polarization-maintained hollow PCF; (d) output spectra of PCF obtained by simulation and experiment; (e) output spectra power as various pump power used; (f) FWM conversion efficiency of PCF [2932]
Fig.7  (a) Diagram of three order distributed Raman assisted FOPA; (b) gain and NF after optimization
Fig.8  (a) Experimental setup of the proposed CD measurement; (b) measured optical spectral interferogram in the wavelength range of 1500 to 1600 nm [15]
Fig.9  Experimental results. (a) Measured CD of 20.62 km G.652 fiber by our method (solid curve) and by Agilent 86037C (dashed curve); (b) measured CD slope by our method (solid curve) and by Agilent 86037C (dashed curve) [15]
Fig.10  (a) Residual CD for each G.652 fiber compensation. Twenty segments (out of 261) 100-km G.652 transmission fiber are randomly selected. (b) residual CD after 2000-km optical transmission. A 2000-km lane is linked by 20 random 100-km G.652 fiber and corresponding fourth-order CD compensation module [16]
Fig.11  (a) Setup of the CD monitor (EDFA: Erbium-doped fiber amplifier. PS: Polarization scrambler. LD: Laser diode. PM: Power meter). (b) output idler wave power versus residual CD of 40 Gb/s 33% return-to-zero on-off keying (RZ OOK) signals (Thick and thin lines are results obtained by our and previous PTF based methods) [17]
Fig.12  Configuration of the implementation of FRFT [18]
Fig.13  BER as a function of the maximum phase shift of PM after 860 km transmission [18]
Fig.14  Experimental setup for 168 × 103 Gb/s DFT-S OFDM-8PSK transmission: (a) 168 carriers generated by the first optical phase modulator; (b) optical spectrum for 168 × 103 Gb/s DFT-S OFDM-8PSK signal. Right inserted figures show the carriers and modulated signal in 7th channel [19]
Fig.15  BER performance against OSNR for DFT-S OFDM-8PSK, OFDM-8QAM, and OFDM-8PSK in a back-to-back configuration [19]
Fig.16  BER versus launch power for DFT-S OFDM-8PSK, OFDM-8QAM, and OFDM-8PSK after 2240 km transmission [19]
Fig.17  BER performance against OSNR for DFT-S OFDM-8PSK, OFDM-8QAM, and OFDM-8PSK after 2240 km transmission [19]
Fig.18  BER performance for DFT-S OFDM-8PSK after 2240 km transmission [19]
1 Zhang H, Cai J X, Batshon H G, Mazurczyk M V, Sinkin O, Foursa D G, Pilipetskii A, Mohs G, Bergano N S.200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency. In: Processing of OFC 2013, Paper PDP5A.6
2 Yu J, Zhang J, Dong Z, Jia Z, Chien H C, Cai Y, Xiao X, Li X. Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs. Optics Express, 2013, 21(13): 15686–15691
doi: 10.1364/OE.21.015686 pmid: 23842354
3 Zhang J, Yu J, Chi N. Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal. Optics Express, 2013, 21(25): 31212–31217
doi: 10.1364/OE.21.031212 pmid: 24514695
5 Porto da Silva E, Carvalho L, Franciscangelis C, Diniz J, Oliveira J, Bordonalli A. Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid. In: Processing of OFC2013, paper JTh2A.39
6 Zhang J, Chien H, Dong Z, Xiao J.Transmission of 480-Gb/s dual-carrier PM-8QAM over 2550 km SMF-28 using adaptive pre-equalization. In: Processing of OFC 2014, paper Th4F.6
7 Zhou X, Nelson L, Magill P, Issac R, Zhu B, Peckham D, Borel P, Carlson K.4000 km transmission of 50 GHz spaced, 10×494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery. In: Processing of OFC 2012, paper PDP5C.6
8 Cai J X, Davidson C R, Lucero A J, Zhang H, Foursa D G, Sinkin O V, Patterson W W, Pilipetskii A N, Mohs G, Bergano N S. 20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing. Journal of Lightwave Technology, 2012, 30(4): 651–657
doi: 10.1109/JLT.2011.2179975
4 Zhang J, Yu J, Jia Z, Chien H C. 400 G transmission of super-Nyquist-filtered signal based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid. Journal of Lightwave Technology, 2014, 32(19): 3239–3246
doi: 10.1109/JLT.2014.2343016
11 Kuo B P P, Myslivets E, Alic N, Radic S. Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer. Journal of Lightwave Technology, 2011, 29(23): 3515–3522
doi: 10.1109/JLT.2011.2169938
12 Slavík R, Parmigiani F, Kakande J, Lundström C, Sjödin M, Andrekson P A, Weerasuriya R, Sygletos S, Ellis A D, Grüner-Nielsen L, Jakobsen D, Herstrøm S, Phelan R, O’Gorman J, Bogris A, Syvridis D, Dasgupta S, Petropoulos P, Richardson D J. All-optical phase and amplitude regeneration for next-generation telecommunications system. Nature Photonics, 2010, 4(10): 690–695
doi: 10.1038/nphoton.2010.203
13 Torounidis T, Andrekson P A, Olsson B E. Fiber-optical parametric amplifier with 70 dB gain. IEEE Photonics Technology Letters, 2006, 18(10): 1194–1196
doi: 10.1109/LPT.2006.874714
14 Tong Z, Lundstrom C, Andrekson P A, McKinstrie C J, Karlsson M, Blessing D J, Tipsuwannaku E, Puttnam B J, Todaand H,Gruner-Nielsen L. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature Photonics, 2011, 79(10): 1038
9 Zhang J, Yu J, Chi N, Dong Z, Yu J, Li X, Tao L, Shao Y. Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing. Journal of Lightwave Technology, 2013, 31(7): 1073–1078
doi: 10.1109/JLT.2013.2242429
10 Zhang J, Huang B, Li X. Improved quadrature duobinary system performance using multi-modulus equalization. Photonic Technology Letters, 2013, 25(16): 1630–1633
doi: 10.1109/LPT.2013.2273034
28 Rao L, Yu C X, Shen X W, Sang X Z, Yuan J H, Zeng X F, Xin X J. Investigation on gain characteristics in non-degenerate cascaded phase sensitive parametric amplifiers. Optoelectronics Letters, 2012, 8(3): 172–175
doi: 10.1007/s11801-012-1174-4
29 Yuan J H, Sang X Z, Wu Q, Yu C X, Wang K R, Yan B B, Shen X W, Han Y, Zhou G Y, Semenova Y, Farrell G, Hou L T. Efficient red-shifted dispersive wave in a photonic crystal fiber for widely tunable mid-infrared wavelength generation. Laser Physics Letters, 2013, 10(4): 045405
doi: 10.1088/1612-2011/10/4/045405
30 Yuan J H, Sang X Z, Wu Q, Yu C X, Zhou G Y, Shen X W, Wang K R, Yan B B, Teng Y L, Xia C M, Han Y, Li S G, Farrell G, Hou L T. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding. Laser Physics Letters, 2013, 10(8): 085402
doi: 10.1088/1612-2011/10/8/085402
31 Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G, Hou L T. Highly efficient anti-Stokes signal conversion by pumping in the normal and anomalous dispersion regions in the fundamental mode of photonic crystal fiber. Journal of Lightwave Technology, 2011, 29(19): 2920–2926
doi: 10.1109/JLT.2011.2163382
32 Yuan J, Zhou G, Liu H, Xia C, Sang X, Wu Q, Yu C, Wang K, Yan B, Han Y, Farrell G, Hou L. Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber. Progress In Electromagnetics Research-PIER, 2013, 141: 659–670
doi: 10.2528/PIER13070302
15 Zong L, Luo F, Cui S, Cao X. Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer. Optics Letters, 2011, 36(5): 660–662
doi: 10.1364/OL.36.000660 pmid: 21368940
16 Zong L, Luo F, Wang Y, Cao X. Dispersion compensation module for 100 Gbit/s optical system and beyond. Optical Fiber Technology, 2011, 17(3): 227–232
doi: 10.1016/j.yofte.2011.02.003
17 Cui S, Sun S, Li L, Ke C, Wan Z, Liu D. All-optical highly sensitive chromatic dispersion monitoring method utilizing phase-matched four-wave mixing. IEEE Photonics Technology Letters, 2011, 23(22): 1724–1726
doi: 10.1109/LPT.2011.2169047
18 Cheng H, Li W, Fan Y, Zhang Z, Yu S, Yang Z. A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module. Optics Communications, 2013, 290(1): 152–157
doi: 10.1016/j.optcom.2012.10.021
19 Yang Q, Xiao X, Li C, Luo M, He Z, Li C, Hu R, Zhang X, Yu S. 168×103 Gb/s 25-GHz-spaced C-band transmission over 2240 km SSMF with improved nonlinearity using DFT-S OFDM-8PSK modulation. In: Processing of Asia Communications and Photonics Conference 2012, PDP paper AF4C.3
20 Yang Q, He Z, Liu W, Yang Z, Yu S, Shieh W, Djordjevic I B. 1-Tb/s large girth LDPC-coded coherent optical OFDM transmission over 1040-km standard single-mode fiber. In: Processing of OFC 2011, paper JThA035
21 Li C, Luo M, Xiao X, Li J, He Z, YangQ, YangZ,YuS.63-Tb/s (368×183.3-Gb/s) C- and L-band all-Raman transmission over 160-km SSMF using OFDM-16QAM modulation. Chinese Optics Letters, 2014, 12(4): 040601–040604
22 Luo M, Li C, Yang Q, He Z, Xu J, Zhang Z, Yu S. 100.3-Tb/s(375×267.27-Gb/s) C- and L-band transmission over 80-km SSMF using DFT-S OFDM 128-QAM. In: Processing of Asia Communications and Photonics Conference 2014, PDP paper AF4B.1
23 Luo M, Mo Q, Li X, Hu R, Qiu Y, Li C, Liu Z, Liu W, Yu H, Du W, Xu J, He Z, Yang Q, Yu S. Transmission of 200 Tb/s (375×3×178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF. Frontiers of Optoelectronics, 2015, 8(4): 394–401
doi: 10.1007/s12200-015-0555-2
24 Li C, Djordjevic I B, Luo M, He Z, Liu W, Yang Q, Xiao X, Xue D, Yu S, Shieh W. Ultra long-haul transmission of a 1-Tb/s LDPC-coded DFT-S OFDM-8PSK superchannel over 12160 km. In: Processing of Asia Communications and Photonics Conference 2013, PDP Paper AF2C.2
25 Luo M, Zhang Z, Li C, Xu J, Zhang X, Li J, He Z, Hu R, Yang Q, Yu S. Real-time single laser based 3.2 Tb/s (32×100-Gb/s) PM-QPSK transmission using coherent detection over 2080-km SSMF. In: Processing of Asia Communications and Photonics Conference 2014, paper ATh4E.2
26 Li C, Zhang X, Li H, Li C, Luo M, Li Z, Xu J, Yang Q, Yu S. Experimental demonstration of 429.96-Gb/s OFDM /OQAM-64QAM over 400-km SSMF transmission within a 50-GHz Grid. IEEE Photonics Journal, 2014, 6(4): 1–8
27 Zeng T, Pan Y, Luo M, Wang Y, Hu R, Yang Q, Yu S. The manipulated rotating BPSK technique compatible with conventional CMA algorithm. In: Processing of OFC 2015, paper TH2A.1
Related articles from Frontiers Journals
[1] Jianguo YUAN, Yuexing JIA, Wenjuan BI, Liang XU. A new construction method of LDPC codes for optical transmission systems[J]. Front Optoelec, 2012, 5(3): 311-316.
[2] Liang ZHAO, Junqiang SUN, Zhefeng HU, Qian HU, Yujie ZHOU, Jing SHAO, Tianye HUANG, Jun LI, . Theoretical demonstration for signal gain in multiple four-wave mixing processes based on cubic susceptibility medium[J]. Front. Optoelectron., 2010, 3(3): 270-282.
[3] LIU Bo, ZHANG Ruobing, LIU Huagang, MA Jing, ZHU Chen, WANG Qingyue. Investigation of spectral bandwidth of BBO-I phase matching non-collinear optical parametric amplification from visible to near-infrared[J]. Front. Optoelectron., 2008, 1(1-2): 101-108.
Full text