Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 87-92     DOI: 10.1007/s12200-016-0596-1
Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure
Zhiqian WU1,2,Yue SHEN2,*(),Xiaoqiang LI1,3,Qing YANG3,Shisheng LIN1,3,*()
1. College of Microelectronics, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Download: PDF(795 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The rectifying behavior between graphene and semiconductors makes novel type of solar cells, photodetectors and light emitting diodes (LEDs). The interface between graphene and ZnO is the key for the performance of the optoelectronic devices. Herein, we find that green light emission is very strong for the forward biased graphene/ZnO nanowire van der Waals heterostructure. We correlated the green light emission with the surface defects locating at the ZnO nanowire surface through the detailed high resolution transmission electron microscopy and photoluminescence measurements. We pointed out engineering the surface of ZnO nanowires could bring a dimension of designing graphene/ZnO LEDs, which could be extended to other types of graphene/semiconductor heterostructure based optoelectronic devices.

Keywords ZnO nanowire      van der Waals heterostructure      light-emitting diode (LED)     
Corresponding Authors: Yue SHEN,Shisheng LIN   
Online First Date: 18 February 2016    Issue Date: 18 March 2016
 Cite this article:   
Zhiqian WU,Yue SHEN,Xiaoqiang LI, et al. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure[J]. Front. Optoelectron., 2016, 9(1): 87-92.
E-mail this article
E-mail Alert
Articles by authors
Zhiqian WU
Xiaoqiang LI
Shisheng LIN
Fig.1  ?(a) Optical image of the graphene-ZnO nanowire heterojunction; (b) Raman spectrum of the graphene; (c) I-V curve of a ZnO nanowire with Ag paste contacting at both ends; (d) microscopic image of the graphene-ZnO heterojunction marked as sample LED 1# at a forward bias of 6 V; (e) I-V curve of LED 1#; (f) light emission spectrum of LED 1# at a forward bias of 6 V
Fig.2  ? PL spectrum of the ZnO nanowire
Fig.3  ?(a) Microscopic image of the graphene-ZnO heterojunction labeled as LED 2#; (b) I-V curve of the LED 2#; (c) spectrum of emitted light at different forward bias voltages; (d) microscopic image of the device with forward bias at 20 V
Fig.4  ?(a) and (b) HRTEM image of ZnO nanowire with a rough surface; (c) and (d) TEM image of a smooth ZnO nanowire coated with graphene
Fig.5  ?Schematic electronic band structure of (a) separated ZnO nanowire and graphene; (b) graphene-ZnO nanowire Schottky junction; (c) Schottky junction under forward bias
1 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
doi: 10.1126/science.1102896 pmid: 15499015
2 Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924
doi: 10.1002/adma.201001068 pmid: 20706983
3 Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
doi: doi: 10.1038/nmat1849
4 Li X, Chen W, Zhang S, Wu Z, Wang P, Xu Z, Chen H, Yin W, Zhong H, Lin S. 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy, 2015, 16: 310–319
doi: 10.1016/j.nanoen.2015.07.003
5 Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D. Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 2010, 22(25): 2743–2748
doi: 10.1002/adma.200904383 pmid: 20379996
6 Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nature Communications, 2015, 6: 8589
doi: 10.1038/ncomms9589 pmid: 26446884
7 Liu X, Ji X, Liu M, Liu N, Tao Z, Dai Q, Wei L, Li C, Zhang X, Wang B. High-performance Ge quantum dot decorated graphene/zinc-oxide heterostructure infrared photodetector. ACS Applied Materials & Interfaces, 2015, 7(4): 2452–2458
doi: 10.1021/am5072173 pmid: 25561422
8 Shelke N T, Karche B R. Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector. Journal of Alloys and Compounds, 2015, 653: 298–303
doi: 10.1016/j.jallcom.2015.08.255
9 Chang C W, Tan W C, Lu M L, Pan T C, Yang Y J, Chen Y F. Graphene/SiO2/p-GaN diodes: an advanced economical alternative for electrically tunable light emitters. Advanced Functional Materials, 2013, 23(32): 4043–4048
doi: 10.1002/adfm.201203035
10 Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687
doi: 10.1063/1.111832
11 Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. Journal of Crystal Growth, 2004, 260(1–2): 166–170
doi: 10.1016/j.jcrysgro.2003.08.019
12 Sun X W, Kwok H S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. Journal of Applied Physics, 1999, 86(1): 408
doi: 10.1063/1.370744
13 Lin S S. Robust low resistivity p-type ZnO:Na films after ultraviolet illumination: the elimination of grain boundaries. Applied Physics Letters, 2012, 101(12): 122109
doi: 10.1063/1.4754003
14 Ye Y, Gan L, Dai L, Meng H, Wei F, Dai Y, Shi Z, Yu B, Guo X, Qin G. Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 2011, 21(32): 11760–11763
doi: 10.1039/c1jm11441g
15 Nam G H, Baek S H, Park I K. Growth of ZnO nanorods on graphite substrate and its application for Schottky diode. Journal of Alloys and Compounds, 2014, 613: 37–41
doi: 10.1016/j.jallcom.2014.05.110
16 Yang J, Zhao X, Shan X, Fan H, Yang L, Zhang Y, Li X. Blue-shift of UV emission in ZnO/graphene composites. Journal of Alloys and Compounds, 2013, 556: 1–5
doi: 10.1016/j.jallcom.2012.12.098
17 Lin S, Ye Z, He H, Zeng Y J, Tang H, Zhao B, Zhu L. Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorods array. Journal of Crystal Growth, 2007, 306(2): 339–343
doi: 10.1016/j.jcrysgro.2007.05.045
18 Lin S S, Hong J I, Song J H, Zhu Y, He H P, Xu Z, Wei Y G, Ding Y, Snyder R L, Wang Z L. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Letters, 2009, 9(11): 3877–3882
19 Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949
doi: 10.1126/science.1058120 pmid: 11239151
20 Lin S S, Chen B G, Pan C T, Hu S, Tian P, Tong L M. Unintentional doping induced splitting of G peak in bilayer graphene. Applied Physics Letters, 2011, 99(23): 233110
doi: 10.1063/1.3666821
21 Lin S, Ye Z, He H, Zhao B, Zhu L, Huang J. Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition. Journal of Applied Physics, 2008, 104(6): 064311
doi: 10.1063/1.2980335
22 Rasool H I, Song E B, Allen M J, Wassei J K, Kaner R B, Wang K L, Weiller B H, Gimzewski J K. Continuity of graphene on polycrystalline copper. Nano Letters, 2011, 11(1): 251–256
doi: 10.1021/nl1036403 pmid: 21117698
23 Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3(4): 210–215
doi: 10.1038/nnano.2008.67 pmid: 18654505
24 Yu R, Pan C, Wang Z L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy & Environmental Science, 2013, 6(2): 494
doi: 10.1039/c2ee23718k
25 Fu X W, Liao Z M, Zhou Y B, Wu H C, Bie Y Q, Xu J, Yu D P. Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Applied Physics Letters, 2012, 100(22): 223114
doi: 10.1063/1.4724208
26 Čížek J, Valenta J, Hruška P, Melikhova O, Procházka I, Novotný M, Bulíř J. Origin of green luminescence in hydrothermally grown ZnO single crystals. Applied Physics Letters, 2015, 106(25): 251902
doi: 10.1063/1.4922944
27 Liu R, You X C, Fu X W, Lin F, Meng J, Yu D P, Liao Z M. Gate modulation of graphene-ZnO nanowire Schottky diode. Scientific Reports, 2015, 5: 10125
doi: 10.1038/srep10125 pmid: 25944683
Related articles from Frontiers Journals
[1] Run HU, Xiaobing LUO, Huai ZHENG, Sheng LIU. Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package[J]. Front Optoelec, 2012, 5(2): 138-146.
[2] Sei-Min KIM, Seon-Ho JANG, Ja-Soon JANG. High-performance and current crowding-free InGaN-GaN-based LEDs integrated by an electrically-reverse-connected Schottky diode and a Mg-delta doped p-GaN[J]. Front Optoelec, 2012, 5(2): 127-132.
[3] Zongyuan LIU, Sheng LIU, Kai WANG, Xiaobing LUO. Status and prospects for phosphor-based white LED packaging[J]. Front Optoelec Chin, 2009, 2(2): 119-140.
Full text