Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 71-80     DOI: 10.1007/s12200-016-0566-7
High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes
Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG()
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Download: PDF(2195 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This work explores the use of poly(3-hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%-40% humidity.

Keywords poly(3-hexylthiophene) (P3HT)      carbon nanotube      CH3NH3PbI3      mesoscopic perovskite solar cell (PSC)      carbon cathode     
Corresponding Authors: Shihe YANG   
Just Accepted Date: 21 December 2015   Online First Date: 14 January 2016    Issue Date: 18 March 2016
 Cite this article:   
Xiaoli ZHENG,Haining CHEN,Zhanhua WEI, et al. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
E-mail this article
E-mail Alert
Articles by authors
Xiaoli ZHENG
Haining CHEN
Zhanhua WEI
Yinglong YANG
Shihe YANG
Fig.1  Schematic showing the fabrication processes of (a) CNTs@P3HT based C-PSCs, (b) CNTs based C-PSCs, and (c) sandwiched P3HT/CNTs based C-PSCs
Fig.2  (a) Top view and (b) cross sectional view SEM images of CH3NH3PbI3 film on FTO glass/c-TiO2/m-TiO2, showing that the size of the crystals is in the range of ~250-400 nm, the thickness of the m-TiO2/perovskite is ~400 nm, and the thickness of the perovskite capping layer is ~900 nm. (c) XRD pattern of the CH3NH3PbI3 film on FTO glass/c-TiO2/m-TiO2
Fig.3  SEM images of (a, b) CNTs@P3HT based C-PSCs, (c, d) CNTs based C-PSCs, and (e, f) sandwiched P3HT/CNTs based C-PSCs. The concentration of P3HT is 2 mg/mL and the concentration of CNTs is 10 mg/mL in chlorobenzene
Fig.4  (a) Raman spectra and (b) XRD patterns of pure P3HT, pure CNTs, and CNTs@P3HT films (2 mg/mL of P3HT). The inset in (b) shows magnified XRD patterns in the 5°-10° region. (c) Device configuration (left) and energy band diagram (right) of CNTs@P3HT based C-PSCs
Fig.5  (a) J-V curves of the C-PSCs with pure CNTs, CNTs@P3HT and sandwiched P3HT/CNTs cathodes (2 mg/mL of P3HT and 10 mg/mL CNTs); (b) J-V curves of the CNTs@P3HT based C-PSCs with different concentrations of P3HT (1, 2 and 5 mg/mL)
samplesVoc/VJsc/(mA·cm-2)FFPCE/%best PCE/%
Tab.1  Photovoltaic performance summarization of C-PSCs based on different cathodes and different concentrations of P3HT. The data and statistics are based on 20 devices for each type
Fig.6  (a) J-V curves for the champion CNTs@P3HT-PSC measured with different scanning directions: forward scan from 0 V to Voc (black curve) and reverse scan from Voc to 0 V (red curve); (b) the corresponding IPCE spectrum of the CNTs@P3HT-PSC; (c) photocurrent density as a function of time held at the maximum output power point (0.70 V) under on-off illumination cycles for the CNTs@P3HT-PSC; (d) the efficiencies of the champion CNTs@P3HT-PSC and the champion CNTs-PSC as a function of storage time in the ambient atmosphere (temperature 25°C, humidity ~20%-40%). The concentration of P3HT is 2 mg/mL
1 Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
doi: 10.1021/ja809598r pmid: 19366264
2 Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591
doi: 10.1038/srep00591 pmid: 22912919
3 Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395–398
doi: 10.1038/nature12509 pmid: 24025775
4 Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319
doi: 10.1038/nature12340 pmid: 23842493
5 Park N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar Cell. Journal of Physical Chemistry Letters, 2013, 4(15): 2423–2429
doi: 10.1021/jz400892a
6 Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546
doi: 10.1126/science.1254050 pmid: 25082698
7 Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903
doi: 10.1038/nmat4014 pmid: 24997740
8 Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Grätzel M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid w-ammonium chlorides. Nature Chemistry, 2015, 7(9): 703–711
doi: 10.1038/nchem.2324 pmid: 26291941
9 Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Gratzel M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 2015, 8(3): 995–1004
doi: 10.1039/C4EE03664F
10 Roldán-Carmona C, Gratia P, Zimmermann I, Grancini G, Gao P, Graetzel M, Nazeeruddin M K. High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy & Environmental Science, 2015, 8(12): 3550–3556
doi: 10.1039/C5EE02555A
11 Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237
doi: 10.1126/science.aaa9272 pmid: 25999372
12 Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 2012, 134(42): 17396–17399
doi: 10.1021/ja307789s pmid: 23043296
13 Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy & Environmental Science, 2013, 6(11): 3249–3253
doi: 10.1039/c3ee42282h
14 Batmunkh M, Shearer C J, Biggs M J, Shapter J G. Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9020–9031
doi: 10.1039/C5TA00873E
15 Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 2014, 14(10): 5561–5568
doi: 10.1021/nl501982b pmid: 25226226
16 Ku Z, Rong Y, Xu M, Liu T, Han H. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3: 3132
doi: 10.1038/srep03132 pmid: 24185501
17 Wang J T W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 2014, 14(2): 724–730
doi: 10.1021/nl403997a pmid: 24341922
18 Cao J, Liu Y M, Jing X, Yin J, Li J, Xu B, Tan Y Z, Zheng N. Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. Journal of the American Chemical Society, 2015, 137(34): 10914–10917
doi: 10.1021/jacs.5b06493 pmid: 26284808
19 Wei H Y, Xiao J Y, Yang Y Y, Lv S T, Shi J J, Xu X, Dong J, Luo Y H, Li D M, Meng Q B. Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon, 2015, 93: 861–868
doi: 10.1016/j.carbon.2015.05.042
20 Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. Journal of the American Chemical Society, 2015, 137(5): 1790–1793
doi: 10.1021/ja5125594 pmid: 25594109
21 Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie (International Edition), 2014, 53(48): 13239–13243
doi: 10.1002/anie.201408638 pmid: 25255744
22 Yan K, Wei Z, Li J, Chen H, Yi Y, Zheng X, Long X, Wang Z, Wang J, Xu J, Yang S. High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small, 2015, 11(19): 2269–2274
doi: 10.1002/smll.201403348 pmid: 25641809
23 Zhou H W, Shi Y T, Wang K, Dong Q S, Bai X G, Xing Y J, Du Y, Ma T L. Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. Journal of Physical Chemistry C, 2015, 119(9): 4600–4605
doi: 10.1021/jp512101d
24 Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6(18): 10505–10510
doi: 10.1039/C4NR03181D pmid: 25081348
25 Li Z, Kulkarni S A, Boix P P, Shi E, Cao A, Fu K, Batabyal S K, Zhang J, Xiong Q, Wong L H, Mathews N, Mhaisalkar S G. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano, 2014, 8(7): 6797–6804
doi: 10.1021/nn501096h pmid: 24924308
26 Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Letters, 2015, 15(4): 2402–2408
doi: 10.1021/nl504701y pmid: 25807395
27 Wei Z H, Chen H N, Yan K Y, Zheng X L, Yang S H. Hysteresis-free multi-wall carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A, 2015, doi: 10.1039/C5TA07714A
28 Rong Y G, Liu L F, Mei A Y, Li X, Han H W. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066
doi: 10.1002/aenm.201501066
29 Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
doi: 10.1126/science.1254763 pmid: 25035487
30 Xu M, Rong Y, Ku Z, Mei A, Liu T, Zhang L, Li X, Han H. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(23): 8607–8611
doi: 10.1039/c4ta00379a
31 Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(17): 9165–9170
doi: 10.1039/C4TA04647A
32 Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A, Han H. Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293: 533–538
doi: 10.1016/j.jpowsour.2015.05.106
33 Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy & Environmental Science, 2014, 7(10): 3326–3333
doi: 10.1039/C4EE01983K
34 Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q. An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Advances, 2014, 4(95): 52825–52830
doi: 10.1039/C4RA09519G
35 Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y, Ma T. Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. Journal of Physical Chemistry Letters, 2014, 5(18): 3241–3246
doi: 10.1021/jz5017069 pmid: 26276339
36 Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Applied Materials & Interfaces, 2014, 6(18): 16140–16146
doi: 10.1021/am504175x pmid: 25162717
37 Chen H N, Wei Z H, Zheng X L, Yang S H. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy, 2015, 15: 216–226
doi: 10.1016/j.nanoen.2015.04.025
38 Zheng X L, Wei Z H, Chen H N, Bai Y, Xiao S, Zhang T, Yang S H. In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. Journal of Energy Chemistry, 2015, doi: 10.1016/j.jechem.2015.10.003
39 Wei Z H, Zheng X L, Chen H N, Long X, Wang Z L, Yang S H. A multifunctional C plus epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(32): 16430–16434
doi: 10.1039/C5TA03802B
40 Hao F, Stoumpos C C, Liu Z, Chang R P H, Kanatzidis M G. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. Journal of the American Chemical Society, 2014, 136(46): 16411–16419
doi: 10.1021/ja509245x pmid: 25374278
41 Meng D L, Sun J H, Jiang S D, Zeng Y, Li Y, Yan S K, Geng J X, Huang Y. Grafting P3HT brushes on GO sheets: distinctive properties of the GO/P3HT composites due to different grafting approaches. Journal of Materials Chemistry, 2012, 22(40): 21583–21591
doi: 10.1039/c2jm35317b
42 Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B, Li Y L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Advanced Energy Materials, 2015, 5(8): 1401943
doi: 10.1002/aenm.201401943
43 Eklund P C, Holden J M, Jishi R A. Vibrational-modes of carbon nanotubes- spectroscopy and theory. Carbon, 1995, 33(7): 959–972
doi: 10.1016/0008-6223(95)00035-C
44 Yang D Q, Rochette J F, Sacher E. Spectroscopic evidence for π-π interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. Journal of Physical Chemistry B, 2005, 109(10): 4481–4484
doi: 10.1021/jp044511+ pmid: 16851521
45 Rao A M, Eklund P C, Bandow S, Thess A, Smalley R E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997, 388(6639): 257–259
doi: 10.1038/40827
46 D'Urso L, Forte G, Russo P, Caccamo C, Compagnini G, Puglisi O. Surface-enhanced raman scattering study on 1D–2D graphene-based structures. Carbon, 2011, 49(10): 3149–3157
doi: 10.1016/j.carbon.2011.03.048
47 Chen J, Liu H, Weimer W A, Halls M D, Waldeck D H, Walker G C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. Journal of the American Chemical Society, 2002, 124(31): 9034–9035
doi: 10.1021/ja026104m pmid: 12148991
48 Jiang L Q, Gao L. Carbon nanotubes-metal nitride composites: a new class of nanocomposites with enhanced electrical properties. Journal of Materials Chemistry, 2005, 15(2): 260–266
doi: 10.1039/b409682g
49 Park Y D, Lim J A, Jang Y, Hwang M, Lee H S, Lee D H, Lee H J, Baek J B, Cho K. Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors. Organic Electronics, 2008, 9(3): 317–322
doi: 10.1016/j.orgel.2007.11.007
50 Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180–185
doi: 10.1038/nphoton.2011.356
51 Irwin M D, Buchholz B, Hains A W, Chang R P H, Marks T J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2783–2787
doi: 10.1073/pnas.0711990105
52 Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Gratzel M, Seok S I I. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7(6): 486–491
doi: 10.1038/nphoton.2013.80
53 Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson E M J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. Journal of Physical Chemistry Letters, 2013, 4(9): 1532–1536
doi: 10.1021/jz400638x pmid: 26282310
54 Ebadian S, Gholamkhass B, Shambayati S, Holdcroft S, Servati P. Effects of annealing and degradation on regioregular polythiophene-based bulk heterojunction organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2010, 94(12): 2258–2264
doi: 10.1016/j.solmat.2010.07.021
55 Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W. Anomalous hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(9): 1511–1515
doi: 10.1021/jz500113x pmid: 26270088
56 Bilkay T, Schulze K, Egorov-Brening T, Bohn A, Janietz S. Copolythiophenes with hydrophilic and hydrophobic side chains: synthesis, characterization, and performance in organic field effect transistors. Macromolecular Chemistry and Physics, 2012, 213(18): 1970–1978
doi: 10.1002/macp.201200267
57 Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414(6860): 188–190
doi: 10.1038/35102535 pmid: 11700553
Related articles from Frontiers Journals
[1] Wei XIONG,Yunshen ZHOU,Wenjia HOU,Lijia JIANG,Masoud MAHJOURI-SAMANI,Jongbok PARK,Xiangnan HE,Yang GAO,Lisha FAN,Tommaso BALDACCHINI,Jean-Francois SILVAIN,Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
[2] Sujata CHAKRABORTY,Nabin Baran MANIK. Improvement of electrical and photovoltaic properties of methyl red dye based photoelectrochemical cells in presence of single walled carbon nanotubes[J]. Front. Optoelectron., 2015, 8(3): 289-297.
[3] Cunxi CHENG, Jihuai WU, Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
[4] Yanli ZHAO, Qiuyan MO. Electrical properties of transparent conducting carbon nanotube films[J]. Front Optoelec Chin, 2009, 2(4): 425-428.
Full text