Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 483-488     DOI: 10.1007/s12200-016-0559-6
RESEARCH ARTICLE |
Application of SOI microring coupling modulation in microwave photonic phase shifters
Rui YANG,Linjie ZHOU(),Minjuan WANG,Haike ZHU,Jianping CHEN
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download: PDF(380 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phase shifter is one of the key devices in microwave photonics. We report a silicon microring resonator with coupling modulation to realize microwave phase shift. With coupling tuning of the Mach-Zehnder interferometer (MZI) coupler to change the resonator from under-coupling to over-coupling, the device can realize a p phase shift on the incoming microwave signal with a frequency up to 25 GHz. The device can also realize 2.5p continuous phase tuning by manipulating the three DC bias voltages applied on the MZI coupler.

Keywords ring resonator      phase shifter      microwave photonics     
Corresponding Authors: Linjie ZHOU   
Just Accepted Date: 18 January 2016   Online First Date: 18 February 2016    Issue Date: 28 September 2016
 Cite this article:   
Rui YANG,Linjie ZHOU,Minjuan WANG, et al. Application of SOI microring coupling modulation in microwave photonic phase shifters[J]. Front. Optoelectron., 2016, 9(3): 483-488.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0559-6
http://journal.hep.com.cn/foe/EN/Y2016/V9/I3/483
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui YANG
Linjie ZHOU
Minjuan WANG
Haike ZHU
Jianping CHEN
Fig.1   Schematic of a microring resonator with coupling enabled by an asymmetric MZI coupler. The blue regions outside the MZI arms are the p-doped regions, and the yellow region in between the MZI arms is the n-doped region. Inset: cross-sectional view of the MZI modulation arms
Fig.2   Optical output power and phase difference responses of the device working at over-coupling and under-coupling
Fig.3   Simulated device performances for (a) optical power and (b) optical phase responses upon bias tuning. The bias voltages in each tuning zone are labeled on the graphs
Fig.4   Simulated optical power (left column) and phase (right column) transmission spectra of all tuning zones. The red dashed line denotes the operation wavelength. The black arrow indicates the spectrum evolution direction
Fig.5  Optical microscope image of the fabricated device. The total length of the device is 1.35 mm. G: ground; S: signal; DC: direct current
Fig.6   Experimental setup to measure the phase shift of a RF signal induced by the device
Fig.7  Measured p phase shift for a RF signal at various frequencies
Fig.8   Measured optical power and phase change upon bias tuning
1 Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. IEEE Journal of Lightwave Technology, 2013, 31(4): 571–586
2 Fisher M, Chuang S. A microwave photonic phase-shifter based on wavelength conversion in a DFB laser. IEEE Photonics Technology Letters, 2006, 18(16): 1714–1716
doi: doi:10.1109/LPT.2006.879929
3 Loayssa A, Lahoz F J. Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technology Letters, 2006, 18(1): 208–210
doi: 10.1109/LPT.2005.861307
4 Xue W, Sales S, Capmany J, Mørk J. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers. Optics Letters, 2009, 34(7): 929–931
doi: 10.1364/OL.34.000929 pmid: 19340174
5 Lee S S, Udupa A H, Erlig H, Hua Zhang D H, Yian Chang D, Cheng Zhang B, Chang W H, Bhattacharya L R, Tsap H R, Steier, Dalton, Fetterman. Demonstration of a photonically controlled RF phase shifter. IEEE Microwave and Guided Wave Letters, 1999, 9(9): 357–359
doi: doi:10.1109/75.790473
6 Chang Q, Li Q, Zhang Z, Qiu M, Ye T, Su Y. A tunable broadband photonic RF phase shifter based on a silicon microring resonator. IEEE Photonics Technology Letters, 2009, 21(1): 60–62
doi: 10.1109/LPT.2008.2008658
7 Pu M, Liu L, Xue W, Ding Y, Ou H, Yvind K, Hvam J M. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator. Optics Express, 2010, 18(6): 6172–6182
doi: 10.1364/OE.18.006172 pmid: 20389640
8 Sacher W D, Poon J K. Characteristics of microring resonators with waveguide-resonator coupling modulation. IEEE Journal of Lightwave Technology, 2009, 27(17): 3800–3811
9 Yang R, Zhou L, Zhu H, Chen J. 28 Gb/s BPSK modulation in a coupling-tuned silicon microring resonator. In: Proceedings of CLEO 2015. San Jose, California, 2015, SW1N.5
10 Wang J, Qiu C, Li H, Ling W, Li L, Pang A, Sheng Z, Wu A M, Wang X, Zou S C, Gan F W. Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator. IEEE Journal of Lightwave Technology, 2013, 31(24): 4119–4125
11 Yariv A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technology Letters, 2002, 14(4): 483–485
doi: 10.1109/68.992585
Related articles from Frontiers Journals
[1] Ashkan PASHAMEHR,Mahdi ZAVVARI,Hamed ALIPOUR-BANAEI. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Front. Optoelectron., 2016, 9(4): 578-584.
[2] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[3] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[4] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[5] Xiaoxiao XUE,Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Front. Optoelectron., 2016, 9(2): 238-248.
[6] Ning ZHANG,Kenan CICEK,Jiangbo ZHU,Shimao LI,Huanlu LI,Marc SOREL,Xinlun CAI,Siyuan YU. Manipulating optical vortices using integrated photonics[J]. Front. Optoelectron., 2016, 9(2): 194-205.
[7] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[8] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[9] Hadi GHORBANPOUR, Somaye MAKOUEI. 2-channel all optical demultiplexer based on photonic crystal ring resonator[J]. Front Optoelec, 2013, 6(2): 224-227.
[10] Jianji DONG, Yuan YU, Bowen LUO, Dexiu HUANG, Xinliang ZHANG. Simple solutions for photonic power-efficient ultra-wideband system assisted by electrical bandpass filter[J]. Front Optoelec, 2012, 5(4): 403-413.
[11] Liyang LU, Jiayang WU, Tao WANG, Yikai SU. Compact all-optical differential-equation solver based on silicon microring resonator[J]. Front Optoelec, 2012, 5(1): 99-106.
[12] Yingtao HU, Xi XIAO, Zhiyong LI, Yuntao LI, Yude YU, Jinzhong YU. Slow light in silicon microring resonators[J]. Front Optoelec Chin, 2011, 4(3): 282-287.
[13] Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Front Optoelec Chin, 2011, 4(3): 264-269.
[14] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed