Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (4) : 565-570     DOI: 10.1007/s12200-016-0501-y
Broadband coplane metamaterial filter based on two nested split-ring-resonators
Benxin WANG1,Xiang ZHAI1(),Guizhen WANG2,Weiqing HUANG1,Lingling WANG1
1. School of Physics and Electronics, Hunan University, Changsha 410082, China
2. Modern Educational Technology Center, Hunan Traditional Chinese Medical College, Zhuzhou 412012, China
Download: PDF(303 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Split ring resonators (SRRs)-based broadband metamaterial filters have attracted considerable attention due to their great prospect of practical applications. These filters had been usually obtained by stacking multiple different-sized metallic patterns, making their fabrication quite troublesome. Herein, we presented a simple design of broadband filter composed of two nested SRRs. The resonance bandwidth of the metamaterial filter gradually increased with the decrease of the arm length of the inner SRR. The increase in the resonance bandwidth was attributed to the increase in the radiation of the entire structure. Moreover, the bandwidth of the metamaterial can be further broadened by decreasing the period of the structure. The proposed filter provides a meaningful way toward expanding the bandwidth operating range from narrowband to broadband in an effective way.

Keywords metamaterial      broadband filter      split-ring-resonators     
Corresponding Authors: Xiang ZHAI   
Just Accepted Date: 25 December 2015   Online First Date: 14 January 2016    Issue Date: 29 November 2016
 Cite this article:   
Benxin WANG,Xiang ZHAI,Guizhen WANG, et al. Broadband coplane metamaterial filter based on two nested split-ring-resonators[J]. Front. Optoelectron., 2016, 9(4): 565-570.
E-mail this article
E-mail Alert
Articles by authors
Benxin WANG
Xiang ZHAI
Guizhen WANG
Weiqing HUANG
Lingling WANG
Fig.1  (a) is the schematic of designed structural, black dotted line in (a) represents a unit cell (b)
Fig.2  Normalized transmission spectra of original SRR and the proposed structure with different values of s2, respectively
Fig.3  Calculated electric (|E|) (up panel) and magnetic (|Hz|) (low panel) field distributions corresponding to different transmission dips at s2 = 4, 8, and 12 mm, respectively
Fig.4  Calculated electric (|E|) and magnetic (|Hz|) field distributions corresponding to different transmission dips at s2 = 20, 24, and 28 mm, respectively
Fig.5  Dependence of the spectral resonance of the nested structure with the change of s1 for s2 = 4 mm (a) and 28 mm (b), respectively; (c) influence of the size of period P on resonance bandwidth
1 Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
doi: 10.1126/science.1133628 pmid: 17053110
2 Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
doi: 10.1103/PhysRevLett.85.3966 pmid: 11041972
3 Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788–792
doi: 10.1126/science.1096796 pmid: 15297655
4 Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
doi: 10.1109/22.798002
5 Yang J, Sauvan C, Liu H T, Lalanne P. Theory of fishnet negative-index optical metamaterials. Physical Review Letters, 2011, 107(4): 043903
6 Dolling G, Enkrich C, Wegener M, Zhou J F, Soukoulis C M, Linden S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198–3200
doi: 10.1364/OL.30.003198 pmid: 16342719
7 Liu N, Liu H, Zhu S, Giessen H. Stereometamaterials. Nature Photonics, 2009, 3(3): 157–162
doi: 10.1038/nphoton.2009.4
8 Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901
9 Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095
doi: 10.1364/OE.15.001084 pmid: 19532336
10 Hussain S, Woo J M, Jang J . Dual-band terahertz metamaterials based on nested split ring resonators. Applied Physics Letters, 2012, 101(9): 091103
11 Wang B, Wang L, Wang G, Wang L, Zhai X, Li X, Huang W. A simple nested metamaterial structure with enhanced bandwidth performance. Optics Communications, 2013, 303: 13–14
doi: 10.1016/j.optcom.2013.04.007
12 Chowdhury D R, Singh R, Reiten M, Chen H T, Taylor A J, O’Hara J F, Azad A K. A broadband planar terahertz metamaterial with nested structure. Optics Express, 2011, 19(17): 15817–15823
doi: 10.1364/OE.19.015817 pmid: 21934944
13 Shen N, Massaouti M,Gokkavas M, Manceau J, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403
14 Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X, Averitt R D. Reconfigurable terahertz metamaterials. Physical Review Letters, 2009, 103(14): 147401
15 Wu D, Fang N, Sun C, Zhang X, Padilla W J, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203
doi: 10.1063/1.1591083
16 Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J, Chen H T. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
doi: 10.1038/nphoton.2009.3
17 Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J.Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
18 Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technology Letters, 2014, 26(2): 111–114
doi: 10.1109/LPT.2013.2289299
19 Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Frequency continuous tunable terahertz metamaterial absorber. Journal of Lightwave Technology, 2014, 32(6): 1183–1189
doi: 10.1109/JLT.2014.2300094
20 Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102
21 Han N R, Chen Z C, Lim C S, Ng B, Hong M H. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Optics Express, 2011, 19(8): 6990–6998
doi: 10.1364/OE.19.006990 pmid: 21503013
22 Li Z, Ding Y J. Terahertz broadband-stop filters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500705
23 Li X, Yang L, Hu C, Luo X, Hong M. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency. Optics Express, 2011, 19(6): 5283–5289
doi: 10.1364/OE.19.005283 pmid: 21445165
24 Liu J, Zhang J, Cai L, Xu B, Song G. Tunable omnidirectional broadband band-stop filter in symmetric hybrid plasmonic structures. Plasmonics, 2013, 8(2): 1101–1108
doi: 10.1007/s11468-013-9515-0
25 Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D, Wang G, Jia X, Lu H, Kang L, Xu W, Chen J, Wu P. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Applied Physics B, Lasers and Optics, 2013, 113(2): 285–290
doi: 10.1007/s00340-013-5470-x
26 Chiang Y, Yang C, Yang Y, Pan C, Yen T. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Applied Physics Letters, 2011, 99(19): 191909
27 Rigi-Tamandani A, Ahmadi-Shokouh J, Tavakoli S. Wideband planar split ring resonator based metamaterials. Progress In Electromagnetics Research M, 2013, 28: 115–128
doi: 10.2528/PIERM12120318
28 Pan Z Y, Zhang P, Chen Z C, Vienne G, Hong M H. Hybrid SRRs design and fabrication for broadband terahertz metamaterials. IEEE Photonics Journal, 2012, 4(5): 1267–1272
doi: 10.1109/JPHOT.2012.2207711
29 Zhou J, Economon E N, Koschny T, Soukoulis C M. Unifying approach to left-handed material design. Optics Letters, 2006, 31(24): 3620–3622
doi: 10.1364/OL.31.003620 pmid: 17130923
30 Wokaun A, Gordon J P, Liao P F. Radiation damping in surface-enhanced raman scattering. Physical Review Letters, 1982, 48(14): 957–960
doi: 10.1103/PhysRevLett.48.957
31 Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland G V. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8(30): 3540–3546
doi: 10.1039/b604856k pmid: 16871343
Related articles from Frontiers Journals
[1] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[2] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[3] Xiaoling ZHANG,Jianqiang GU,Jiaguang HAN,Weili ZHANG. Tailoring electromagnetic responses in terahertz superconducting metamaterials[J]. Front. Optoelectron., 2015, 8(1): 44-56.
[4] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[5] Yinghui GUO, Lianshan YAN, Wei PAN, Bin LUO, Xiantao ZHANG, Xiangang LUO. Misalignments among stacked layers of metamaterial terahertz absorbers[J]. Front Optoelec, 2014, 7(1): 53-58.
[6] Zhenyu YANG, Peng ZHANG, Peiyuan XIE, Lin WU, Zeqin LU, Ming ZHAO. Polarization properties in helical metamaterials[J]. Front Optoelec, 2012, 5(3): 248-255.
[7] Min YAN, Niels Asger MORTENSEN, Min QIU. Engineering modes in optical fibers with metamaterial[J]. Front Optoelec Chin, 2009, 2(2): 153-158.
Full text