Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 252-268     DOI: 10.1007/s12200-015-0539-2
Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents
Cheng ZHANG1,2,Jie ZHONG1,2,*(),Jiang TANG2,*()
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong Univesity of Science and Technology, Wuhan 430074, China
Download: PDF(3034 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Cu2ZnSn(S,Se)4 (CZTSSe) is considered as the promising absorbing layer materials for solar cells due to its earth-abundant constituents and excellent semiconductor properties. Through solution-processing, such as various printing methods, the fabrication of high performance CZTSSe solar cell could be applied to mass production with extremely low manufacturing cost and high yield speed. To better fulfill this goal, environmental-friendly inks/solutions are optimum for further reducing the capital investment on instrument, personnel and environmental safety. In this review, we summarized the recent development of CZTSSe thin films solar cells fabricated with benign solvents, such as water and ethanol. The disperse system can be classified to the true solution (consisting of molecules) and the colloidal suspension (consisting of nanoparticles).Three strategies for stabilization (i.e., physical method, chemical capping and self-stabilization) are proposed to prepare homogeneous and stable colloidal nanoinks. The one-pot self-stabilization method stands as an optimum route for preparing benign inks for its low impurity involvement and simple procedure. As-prepared CZTSSe inks would be deposited onto substrates to form thin films through spin-coating, spraying, electrodeposition or successive ionic layer adsorption and reaction (SILAR) method, followed by annealing in a chalcogen (S- or Se-containing) atmosphere to fabricate absorber. The efficiency of CZTSSe solar cell fabricated with benign solvents can also be enhanced by constituent adjustments, doping, surface treatments and blocking layers modifications, etc., and the deeper research will promise it a comparable performance to the non-benign CZTSSe systems.

Keywords Cu2ZnSn(S      Se)4 (CZTSSe)      solar cell      benign solvents      metal chalcogenide complexes (MCCs)      solution processing     
Corresponding Authors: Jie ZHONG,Jiang TANG   
Just Accepted Date: 17 August 2015   Online First Date: 08 September 2015    Issue Date: 18 September 2015
 Cite this article:   
Cheng ZHANG,Jie ZHONG,Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Front. Optoelectron., 2015, 8(3): 252-268.
E-mail this article
E-mail Alert
Articles by authors
Jiang TANG
Fig.1  Main processing steps of CZTS thin film synthesis using benign solvents
metal source sulfur source solvent additive reference
metal chlorides thiourea water [5]
metal chlorides thiourea water HCl [6,7]
metal chlorides thiourea water-ethanol (30 vol% ethanol) [810]
metal oxides ammonium thioglycolate water [11]
metal chlorides, zinc acetate thiourea water [12]
Tab.1  Constituents of solutions in papers
influence additive [26] sulfur source [28] reaction duration [24] reaction temperature [24]
what phase phase purity purity
how ethylenediamine (EN) increases orthorhombic CZTS different sulfur sources produce different phases longer time promotes the formation of pure CZTS higher purity at higher reaction temperature
why EN reduces the surface energy of CZTS crystals reaction rate of Zn2+ and sulfur sources determines CZTS crystal structure complete the reaction higher temperature provides more energy
Tab.2  Factors influencing products of hydrothermally prepared CZTS NCs
Fig.2  TEM images of CZTS NCs prepared by hydrothermal process: (a) low resolution TEM image; (b) high resolution TEM image; (c) SAED pattern; and (d) picture of well-dispersed CZTS/ethanol ‘ink’ [22]
Fig.3  Schematic diagram of the preparation of CZTS solution using metal sulfides with cetyltrimethyl ammonium bromide (CTAB) as the capping ligand. A typical illustration of carbon-chained ligands capping on the NCs [17]
Fig.4  Schematic diagram of the self-stabilized ink [13]
Fig.5  CZTS nanoinks preparation and characterization. (a) Photos of CZTS nanoinks processed by one-pot mixing of aqueous Sn-MCC and Cu/Zn sources; (b) Raman spectrum of aqueous Sn-MCC solution; (c) FTIR spectra of CZTS inks vacuum-dried (dried ink) and the precipitation from centrifugation (centri-powder); (d) TEM morphology of the dispersed NCs with the SAD pattern; (e) high-resolution TEM image of a few NCs with measured lattice distance of 0.31nm corresponding to the (111) lattice distance of Cu/ZnS; (f) EDS analysis of as-made CZTS NCs. A Mo grid with carbon support film was used to manifest that the Cu signal is from NCs; (g) DLS characterization of the CZTS nanoink; (h) Zeta-potential curve of aqueous nanoink associated with MCC capping [13]
Fig.6  Dark-field STEM image and corresponding EDX-STEM mapping for Cu, Zn, and Sn elements in a slice of a Mo/CZTS (Se)/CdS/ZnO/ITO device (Cu: red, Zn: blue, Sn: green) with a CZTS (Se) film made by non-pyrolytic spray [15,16]
Fig.7  Schematic diagram of SILAR technique for the deposition of CZTS: beaker 1 contains cationic precursors, beaker 3 contains anionic precursor and beakers 2 and 4 contain double distilled water (DDW) [48]
techniques time-consuming simplicity large-scale production solution/ suspension quality of film highest efficiency
spincoating [11] no yes no both general 6.62%
spray [16] no yes yes both general 8.60%
electrodeposition [41] no no yes solution good 3.40%
SILAR [46] yes yes yes solution general 1.85%
Tab.3  Comparison of different deposition techniques with highest efficiencies
components solution/ suspension deposition technique temperature/°C time/min atmosphere reaction
Cu2S+ metal elements [14] suspension spin-coating 400-530 30 N2 + H2S (5%) liquid phase sintering
metal sulfides [52] solution SILAR 200-500 120 N2 + S solid state reaction
metal oxides [18] suspension doctor-blading 250-600 30 S sulfuration
metastable CZTS [28] suspension doctor-blading 550-600 30 S phase transformation (to kesterite)
kesterite CZTS [25] suspension spin-coating 450 60 N2 growth
metal sulfides [13] suspension spin-coating 540-600 10-15 N2 + Se solid state reaction
Tab.4  Comparison of annealing conditions for CZTS film deposited using different techniques
Fig.8  XRD patterns of CZTS thin films as a function of annealing temperatures [8]
Fig.9  Characterization of CZTSSe film. (a) Raman curves of the CZTSSe film produced by annealing the CZTS film in an atmosphere containing different amounts of Se and S, indicating a fully tunable composition and consequently a band gap; (b) XRD pattern of the CZTSSe absorber film. Peaks indexed to Mo and MoSe2 (from substrate) as well as the standard diffraction patterns for CZTS (JSPDS 26-0575) and CZTSe (JSPDS 52-0868) are included for reference; (c) cross-sectional and (d) top-view SEM images of the CZTSSe absorber film [13]
Fig.10  (a) J-V curve and (b) EQE spectrum of the CZTSSe device fabricated from aqueous CZTS nanoink [13]
samples Cu/(Zn+ Sn) Zn/Sn
As-deposited (from stoichiometry solution) 0.96 0.79
annealing with S (550°C) (from stoichiometry solution) 1.01 0.98
annealing with S (550°C) + KCN (from stoichiometry solution) 0.58 0.90
annealing with S+ Sn (550°C) (from stoichiometry solution) 0.99 0.92
annealing with S+ Sn (550°C) + KCN (from stoichiometry solution) 0.52 0.94
As-deposited (from nonstoichiometry solution) (-20% Cu and+20% Zn) 1.00 1.13
annealing with S+ Sn (550°C) (from nonstoichiometry solution) (-20% Cu and+20% Zn) 0.80 1.37
Tab.5  Compositional ratios of the precursor elements for as-deposited, annealed, and annealed and chemically treated samples. The as-deposited samples were deposited from stoichiometry and nonstoichiometry solutions [7]
Fig.11  (a) SEM image of typical solar cell based on CZTS:Na nanocrystals. Electrical characterization of the CZTS:Na- and CZTS- based devices; (b) current-voltage (J -V) characteristics under air mass 1.5 illumination, 100 mW/cm2; (c) EQE spectrum of the device without any applied bias; (d) TRPL of the device under low injection; (e) capacitance-voltage measurement, with the measurement frequency of 11 kHz, the DC bias ranging from 0 to - 0.5 V, and the temperature at 300 K [68]
Fig.12  Electronic characterization for CZTSSe devices S2 and S3. Admittance spectroscopy (AS) of S2 (a) and S3 (b) with temperature range of 180 to 300 K; (c) the trap conductance spectra (Gm-Gd)/w; and equivalent circuit model; (d) Arrhenius plots of S3 and S2 derived from AS patterns. The estimated energetic depths of the defect (Ea) for S3 and S2 are 101 and 156 meV, respectively [71]
1 Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Applied Physics Express, 2008, 1(4): 041201
doi: 10.1143/APEX.1.041201
2 Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W. Cu2ZnSnS4 thin film solar cells by fast coevaporation. Progress in Photovoltaics: Research and Applications, 2011, 19(1): 93–96
doi: 10.1002/pip.976
3 Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7):
doi: 10.1002/aenm.201301465
4 Zhang H, Hu B, Sun L, Hovden R, Wise F W, Muller D A, Robinson R D. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Letters, 2011, 11(12): 5356–5361
doi: 10.1021/nl202892p pmid: 22011091
5 Kamoun N, Bouzouita H, Rezig B. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 2007, 515(15): 5949–5952
doi: 10.1016/j.tsf.2006.12.144
6 Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H. Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials and Solar Cells, 2014, 124: 55–60
doi: 10.1016/j.solmat.2014.01.029
7 Vigil-Galán O, Courel M, Espindola-Rodriguez M, Izquierdo-Roca V, Saucedo E, Fairbrother A. Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method. Journal of Renewable and Sustainable Energy, 2013, 5(5): 053137
doi: 10.1063/1.4825253
8 Yeh M Y, Lee C C, Wuu D S. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol-gel spin-coated deposition. Journal of Sol-Gel Science and Technology, 2009, 52(1): 65–68
doi: 10.1007/s10971-009-1997-z
9 Jiang M, Lan F, Yan X, Li G. Cu2ZnSn(S1-xSex)4thin film solar cells prepared by water-based solution process. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(3): 223–227
10 Jiang M, Li Y, Dhakal R, Thapaliya P, Mastro M, Caldwell J, Kub F, Yan X. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 2011, 1(1): 019501
doi: 10.1117/1.3628450
11 Tian Q, Huang L, Zhao W, Yang Y, Wang G, Pan D. Metal sulfide precursor aqueous solutions for fabrication of Cu2ZnSn(S,Se)4 thin film solar cells. Green Chemistry, 2015, 17(2): 1269–1275
doi: 10.1039/C4GC01828A
12 Kishore Kumar Y B, Suresh Babu G, Uday Bhaskar P, Sundara Raja V. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2009, 93(8): 1230–1237
doi: 10.1016/j.solmat.2009.01.011
13 Zhong J, Xia Z, Zhang C, Li B, Liu X, Cheng Y B, Tang J. One-pot synthesis of self-stabilized aqueous nanoinks for Cu2ZnSn(S,Se)4 solar cells. Chemistry of Materials, 2014, 26(11): 3573–3578
doi: 10.1021/cm501270j
14 Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy & Environmental Science, 2012, 5(1): 5340–5345
doi: 10.1039/C1EE02314D
15 Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. Efficient Cu2ZnSnS4 solar cells spray coated from a hydro-alcoholic colloid synthesized by instantaneous reaction. RSC Advances, 2014, 4(28): 14655–14662
doi: 10.1039/c4ra01707b
16 Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. 8.6% efficient CZTSSe solar cells sprayed from water-ethanol CZTS colloidal solutions. Journal of Physical Chemistry Letters, 2014, 5(21): 3763–3767
doi: 10.1021/jz501864a
17 Li Z, Ho J C W, Lee K K, Zeng X, Zhang T, Wong L H, Lam Y M. Environmentally friendly solution route to kesterite Cu2ZnSn(S,Se)4 thin films for solar cell applications. RSC Advances, 2014, 4(51): 26888–26894
doi: 10.1039/c4ra03349c
18 Chen G, Yuan C, Liu J, Huang Z, Chen S, Liu W, Jiang G, Zhu C. Fabrication of Cu2ZnSnS4 thin films using oxides nanoparticles ink for solar cell. Journal of Power Sources, 2015, 276: 145–152
doi: 10.1016/j.jpowsour.2014.11.112
19 van Embden J, Chesman A S, Della Gaspera E, Duffy N W, Watkins S E, Jasieniak J J. Cu?ZnSnS4xSe4(1-x) solar cells from polar nanocrystal inks. Journal of the American Chemical Society, 2014, 136(14): 5237–5240
doi: 10.1021/ja501218u pmid: 24690032
20 Kang C C, Chen H F, Yu T C, Lin T C. Aqueous synthesis of wurtzite Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 24–26
doi: 10.1016/j.matlet.2013.01.014
21 Kush P, Ujjain S K, Mehra N C, Jha P, Sharma R K, Deka S. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics. Chemphyschem: a European journal of Chemical Physics and Physical Chemistry, 2013, 14(12): 2793–2799
22 Liu W, Guo B, Mak C, Li A, Wu X, Zhang F. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films, 2013, 535: 39–43
doi: 10.1016/j.tsf.2012.11.073
23 Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm, 2012, 14(11): 3847–3850
doi: 10.1039/c2ce06552e
24 Hsu K C, Liao J D, Chao L M, Fu Y S. Fabrication and characterization of Cu2ZnSnS4 powders by a hydrothermal method. Japanese Journal of Applied Physics, 2013, 52(6R): 061202
doi: 10.7567/JJAP.52.061202
25 Camara S M, Wang L, Zhang X. Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology, 2013, 24(49): 495401
doi: 10.1088/0957-4484/24/49/495401 pmid: 24231683
26 Jiang H, Dai P, Feng Z, Fan W, Zhan J. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. Journal of Materials Chemistry, 2012, 22(15): 7502–7506
doi: 10.1039/c2jm16870g
27 Tiong V T, Bell J, Wang H. One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals- a hydrothermal approach. Beilstein Journal of Nanotechnology, 2014, 5: 438–446
doi: 10.3762/bjnano.5.51 pmid: 24778970
28 Tiong V T, Zhang Y, Bell J, Wang H. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: the effect of the sulphur precursor. CrystEngComm, 2014, 16(20): 4306–4313
doi: 10.1039/C3CE42606H
29 Zhao Y, Zhou W H, Jiao J, Zhou Z J, Wu S X. Aqueous synthesis and characterization of hydrophilic Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 174–176
doi: 10.1016/j.matlet.2013.01.059
30 Kovalenko M V, Scheele M, Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science, 2009, 324(5933): 1417–1420
doi: 10.1126/science.1170524 pmid: 19520953
31 Kovalenko M V, Bodnarchuk M I, Zaumseil J, Lee J S, Talapin D V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. Journal of the American Chemical Society, 2010, 132(29): 10085–10092
doi: 10.1021/ja1024832 pmid: 20593874
32 Jiang C, Lee J S, Talapin D V. Soluble precursors for CuInSe2, CuIn1-xGaxSe2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands. Journal of the American Chemical Society, 2012, 134(11): 5010–5013
doi: 10.1021/ja2105812 pmid: 22329720
33 Zhou H, Duan H S, Yang W, Chen Q, Hsu C J, Hsu W C, Chen C C, Yang Y. Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability. Energy & Environmental Science, 2014, 7(3): 998–1005
doi: 10.1039/c3ee43101k
34 Su Z, Sun K, Han Z, Cui H, Liu F, Lai Y, Li J, Hao X, Liu Y, Green M A. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(2): 500–509
doi: 10.1039/C3TA13533K
35 Kim S, Kim J. Effect of selenization on sprayed Cu2ZnSnS4 thin film solar cell. Thin Solid Films, 2013, 547: 178–180
doi: 10.1016/j.tsf.2013.03.094
36 Scragg J J, Berg D M, Dale P J A. 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry, 2010, 646(1–2): 52–59
doi: 10.1016/j.jelechem.2010.01.008
37 Araki H, Kubo Y, Mikaduki A, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Oishi K, Takeuchi A. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 996–999
doi: 10.1016/j.solmat.2008.11.045
38 Scragg J J, Dale P J, Peter L M. Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochemistry Communications, 2008, 10(4): 639–642
doi: 10.1016/j.elecom.2008.02.008
39 Scragg J J, Dale P J, Peter L M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealin88g route. Thin Solid Films, 2009, 517(7): 2481–2484
doi: 10.1016/j.tsf.2008.11.022
40 Iljina J, Zhang R, Ganchev M, Raadik T, Volobujeva O, Altosaar M, Traksmaa R, Mellikov E. Formation of Cu2ZnSnS4 absorber layers for solar cells by electrodeposition-annealing route. Thin Solid Films, 2013, 537: 85–89
doi: 10.1016/j.tsf.2013.04.038
41 Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, K?tschau I, Schock H W, Schurr R, H?lzing A, Jost S, Hock R, Vo? T, Schulze J, Kirbs A. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 2009, 517(7): 2511–2514
doi: 10.1016/j.tsf.2008.11.061
42 Wang Y, Ma J, Liu P, Chen Y, Li R, Gu J, Lu J, Yang S, Gao X. Cu2ZnSnS4 films deposited by a co-electrodeposition-annealing route. Materials Letters, 2012, 77: 13–16
doi: 10.1016/j.matlet.2012.02.120
43 Pawar S M, Pawar B S, Moholkar A V, Choi D S, Yun J H, Moon J H, Kolekar S S, Kim J H. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 2010, 55(12): 4057–4061
doi: 10.1016/j.electacta.2010.02.051
44 Schurr R, H?lzing A, Jost S, Hock R, Vo? T, Schulze J, Kirbs A, Ennaoui A, Lux-Steiner M, Weber A, K?tschau I, Schock H W. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors. Thin Solid Films, 2009, 517(7): 2465–2468
doi: 10.1016/j.tsf.2008.11.019
45 Chan C P, Lam H, Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Solar Energy Materials and Solar Cells, 2010, 94(2): 207–211
doi: 10.1016/j.solmat.2009.09.003
46 Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S. Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction echnique: characterization and application. Electrochimica Acta, 2012, 66: 216–221
doi: 10.1016/j.electacta.2012.01.079
47 Mali S S, Shinde P S, Betty C A, Bhosale P N, Oh Y W, Patil P S. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids, 2012, 73(6): 735–740
doi: 10.1016/j.jpcs.2012.01.008
48 Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 2012, 47(2): 302–307
doi: 10.1016/j.materresbull.2011.11.020
49 Shinde N M, Deshmukh P R, Patil S V, Lokhande C D. Aqueous chemical growth of Cu2ZnSnS4 (CZTS) thin films: air annealing and photoelectrochemical properties. Materials Research Bulletin, 2013, 48(5): 1760–1766
doi: 10.1016/j.materresbull.2012.12.053
50 Patel K, Shah D V, Kheraj V. Influence of deposition parameters and annealing on Cu2ZnSnS4 thin films grown by SILAR. Journal of Alloys and Compounds, 2015, 622: 942–947
doi: 10.1016/j.jallcom.2014.11.019
51 Su Z, Yan C, Sun K, Han Z, Liu F, Liu J, Lai Y, Li J, Liu Y. Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Applied Surface Science, 2012, 258(19): 7678–7682
doi: 10.1016/j.apsusc.2012.04.120
52 Gao C, Shen H, Jiang F, Guan H. Preparation of Cu2ZnSnS4 film by sulfurizing solution deposited precursors. Applied Surface Science, 2012, 261: 189–192
doi: 10.1016/j.apsusc.2012.07.137
53 Wangperawong A, King J S, Herron S M, Tran B P, Pangan-Okimoto K, Bent S F. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 2011, 519(8): 2488–2492
doi: 10.1016/j.tsf.2010.11.040
54 Moriya K, Tanaka K, Uchiki H. Characterization of Cu2ZnSnS4thin films prepared by photo-chemical deposition. Japanese Journal of Applied Physics, 2005, 44(1B): 715–717
doi: 10.1143/JJAP.44.715
55 Shinde N M, Lokhande C D, Kim J H, Moon J H. Low cost and large area novel chemical synthesis of Cu2ZnSnS4 (CZTS) thin films. Journal of Photochemistry and Photobiology A Chemistry, 2012, 235: 14–20
doi: 10.1016/j.jphotochem.2012.02.006
56 Chen S, Walsh A, Gong X G, Wei S H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.  Advanced Materials,  2013,  25(11):  1522–1539
doi: 10.1002/adma.201203146 pmid: 23401176
57 Hergert F, Hock R. Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) starting from binary chalcogenides. Thin Solid Films, 2007, 515(15): 5953–5956
doi: 10.1016/j.tsf.2006.12.096
58 Shin S W, Pawar S M, Park C Y, Yun J H, Moon J H, Kim J H, Lee J Y. Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Solar Energy Materials and Solar Cells, 2011, 95(12): 3202–3206
doi: 10.1016/j.solmat.2011.07.005
59 Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 2011, 95(6): 1421–1436
doi: 10.1016/j.solmat.2010.11.028
60 Polizzotti A, Repins I L, Noufi R, Wei S H, Mitzi D B. The state and future prospects of kesterite photovoltaics. Energy & Environmental Science, 2013, 6(11): 3171–3182
doi: 10.1039/c3ee41781f
61 Vigil-Galán O, Courel M, Andrade-Arvizu J A, Sánchez Y, Espíndola-Rodríguez M, Saucedo E, Seuret-Jiménez D, Titsworth M. Route towards low cost-high efficiency second generation solar cells: current status and perspectives. Journal of Materials Science Materials in Electronics, 2015, 26(8): 5562–5573
doi: 10.1007/s10854-014-2196-4
62 Chen S, Gong X G, Walsh A, Wei S H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters, 2010, 96(2): 021902
doi: 10.1063/1.3275796
63 Vigil-Galán O, Espíndola-Rodríguez M, Courel M, Fontané X, Sylla D, Izquierdo-Roca V, Fairbrother A, Saucedo E, Pérez-Rodríguez A. Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency. Solar Energy Materials and Solar Cells, 2013, 117: 246–250
doi: 10.1016/j.solmat.2013.06.008
64 Wen Q, Li Y, Yan J, Wang C. Crystal size-controlled growth of Cu2ZnSnS4 films by optimizing the Na doping concentration. Materials Letters, 2015, 140: 16–19
doi: 10.1016/j.matlet.2014.10.147
65 Prabhakar T, Jampana N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2011, 95(3): 1001–1004
doi: 10.1016/j.solmat.2010.12.012
66 Tong Z, Yan C, Su Z, Zeng F, Yang J, Li Y, Jiang L, Lai Y, Liu F. Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2014, 105(22): 223903
doi: 10.1063/1.4903500
67 Johnson M, Baryshev S V, Thimsen E, Manno M, Zhang X, Veryovkin I V, Leighton C, Aydil E S. Alkali-metal-enhanced grain growth in Cu2ZnSnS4thin films. Energy & Environmental Science, 2014, 7(6): 1931–1938
doi: 10.1039/C3EE44130J
68 Zhou H, Song T B, Hsu W C, Luo S, Ye S, Duan H S, Hsu C J, Yang W, Yang Y. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. Journal of the American Chemical Society, 2013, 135(43): 15998–16001
doi: 10.1021/ja407202u pmid: 24128165
69 Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Nose Y, Scarpulla M A, Yoshino K. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Applied Physics Letters, 2014, 104(15): 152101
doi: 10.1063/1.4871208
70 Todorov T, Mitzi D B. Direct liquid coating of chalcopyrite light-absorbing layers for photovoltaic devices. European Journal of Inorganic Chemistry, 2010, 2010(1): 17–28
doi: 10.1002/ejic.200900837
71 Zhong J, Xia Z, Luo M, Zhao J, Chen J, Wang L, Liu X, Xue D J, Cheng Y B, Song H, Tang J. Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells. Scientific Reports, 2014, 4: 6288–6296
doi: 10.1038/srep06288 pmid: 25190491
72 Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411
doi: 10.1063/1.363401
73 Shin B, Bojarczuk N A, Guha S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Applied Physics Letters, 2013, 102(9): 091907
doi: 10.1063/1.4794422
74 Cui H, Lee C Y, Li W, Liu X, Wen X, Hao X. Improving efficiency of evaporated Cu2ZnSnS4 thin film solar cells by a thin Ag intermediate layer between absorber and back contact. International Journal of Photoenergy, 2015, 170507
doi: 10.1155/2015/170507
75 Liu X, Cui H, Li W, Song N, Liu F, Conibeer G, Hao X. Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(12): 966–970
76 Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 72–76
doi: 10.1002/pip.1174
77 Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Applied Physics Letters, 2014, 104(5): 051105
doi: 10.1063/1.4863736
Related articles from Frontiers Journals
[1] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
[2] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[3] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[4] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[5] Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
[6] Heng LI,Wei JING,Dapeng YU,Qing ZHAO. Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires[J]. Front. Optoelectron., 2016, 9(1): 53-59.
[7] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[8] Asma OUANOUGHI,Abdesselam HOCINI,Djamel KHEDROUCHE. Enhanced absorption of solar cell made of photonic crystal by geometrical design[J]. Front. Optoelectron., 2016, 9(1): 93-98.
[9] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[10] Xihua WANG. Recent progress in colloidal quantum dot photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 241-251.
[11] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[12] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[13] Jun HAN, Ying ZHOU, Yang Tian, Ziheng HUANG, Xiaohua WANG, Jie ZHONG, Zhe XIA, Bo YANG, Haisheng SONG, Jiang TANG. Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices[J]. Front Optoelec, 2014, 7(1): 37-45.
[14] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[15] Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 373-385.
Full text