Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2014, Vol. 7 Issue (4) : 450-466     DOI: 10.1007/s12200-014-0458-7
REVIEW ARTICLE |
Recent advances in holographic data storage
Hao RUAN()
Research Laboratory for High Density Optical Storage, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Download: PDF(1132 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nowadays, big-data centers still rely on hard drives. However, there is strong evidence that these surface-storage technologies are approaching fundamental limits that may be difficult to overcome, as ever-smaller bits become less thermally stable and harder to access. An intriguing approach for next generation data-storage is to use light to store information throughout the three-dimensional (3D) volume of a material. Holographic data storage (HDS) is poised to change the way we write and retrieve data forever. After many years of developing appropriate recording media and optical read–write architectures, this promising technology is now moving industriously to the market. In this paper, a review of the major achievements of HDS in the past ten years is presented and the key technique details are discussed. The author concludes that HDS technology is an attractive candidate for big data centers in the future. On the other hand, there are many challenges ahead for HDS technology to overcome in the years to come.

Keywords holographic data storage (HDS)      microholography      photopolymer      channel code      signal detection      big data center     
Corresponding Authors: Hao RUAN   
Just Accepted Date: 30 October 2014   Online First Date: 24 November 2014    Issue Date: 12 December 2014
 Cite this article:   
Hao RUAN. Recent advances in holographic data storage[J]. Front. Optoelectron., 2014, 7(4): 450-466.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-014-0458-7
http://journal.hep.com.cn/foe/EN/Y2014/V7/I4/450
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao RUAN
Fig.1  How to record and read data using holograms: (a) holographic storage of a single data bit; (b) read out of the hologram (After Ref. [4])
Fig.2  Digital holographic data storage (HDS) scheme (After Refs. [4,10,11])
Fig.3  Representative optical architectures for holographic data storage (HDS) system. SLM: spatial light modulator
Fig.4  Illustration of the packing density increase by using (b) polytopic multiplexing over (a) traditional angle multiplexing (After Refs. [12,13])
Fig.5  Grating formation in photopolymer (After Ref. [62]). (a) Sinusoidal illuminating intensity distribution at the plate; (b) photopolymer layer before recording; (c) photopolymer layer during recording
Fig.6  Writing mechanism of two-chemistry approach
Fig.7  Overview of holographic data storage (HDS) data channel
Fig.8  Simulated data pixel image neighborhood (real part of complex amplitude) (After Ref. [93])
1 Ruan H, Bu C Y. Multilayer optical storage for big data center: by pre-layered scheme. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8913: 891308
doi: 10.1117/12.2032302
2 Gartner Inc. 2013, http://www.gartner.com/newsroom/id/496819
3 Poess M, Nambiar R O. Energy cost, the key challenge of today’s data centers: a power consumption analysis of TPC-C results. In: Proceedings of the VLDB Endowment, 2008, 1(2): 1229–1240
doi: 10.14778/1454159.1454162
4 Burr G W. Three-dimensional optical storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5225: 78
doi: 10.1117/12.510403
5 van Heerden P J. Theory of optical information storage in solids. Applied Optics, 1963, 2(4): 393–400
doi: 10.1364/AO.2.000393
6 Anderson L K. Holographic optical memory for bulk data storage. Bell Laboratories Record, 1968, 45(10): 319–326
7 Staebler D L, Burke W J, Phillips W, Amodei J J. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3. Applied Physics Letters, 1975, 26(4): 182–184
doi: 10.1063/1.88108
8 Tsunoda Y, Tatsuno K, Kataoka K, Takeda Y. Holographic video disk: an alternative approach to optical video disks. Applied Optics, 1976, 15(6): 1398–1403
doi: 10.1364/AO.15.001398 pmid: 20165197
9 Kubota K, Ono Y, Kondo M, Sugama S, Nishida N, Sakaguchi M. Holographic disk with high data transfer rate: its application to an audio response memory. Applied Optics, 1980, 19(6): 944–951
doi: 10.1364/AO.19.000944 pmid: 20220963
10 Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data. Science, 1994, 265(5173): 749–752
doi: 10.1126/science.265.5173.749 pmid: 17736271
11 Coufal H J, Psaltis D, Sincerbox G. Holographic Data Storage. New York: Springer-Verlag, 2000
12 Curtis K, Dhar L, Hill A, Wilson W, Ayres M. Holographic Data Storage: From Theory to Practical Systems. Chichester, UK: John Wiley & Sons Ltd, 2011
13 Anderson K, Curtis K. Polytopic multiplexing. Optics Letters, 2004, 29(12): 1402–1404
doi: 10.1364/OL.29.001402 pmid: 15233449
14 Horimai H, Tan X. Collinear technology for a holographic versatile disk. Applied Optics, 2006, 45(5): 910–914
doi: 10.1364/AO.45.000910 pmid: 16512533
15 Eichler H J, Kuemmel P, Orlic S, Wappelt A. High-density disk storage by multiplexed microholograms. IEEE Journal on Selected Topics in Quantum Electronics, 1998, 4(5): 840–848
doi: 10.1109/2944.735770
16 Yamatsu H, Ezura M, Kihara N. Study on Multiplexing methods for volume holographic memory. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), 2005, ThE1
17 Shimada K, Ide T, Shimano T, Anderson K, Curtis K. New optical architecture for holographic data storage system compatible with Blu-ray Disc? system. Optical Engineering (Redondo Beach, Calif.), 2014, 53(2): 025102
doi: 10.1117/1.OE.53.2.025102
18 Li H Y S, Psaltis D. Three-dimensional holographic disks. Applied Optics, 1994, 33(17): 3764–3774
doi: 10.1364/AO.33.003764 pmid: 20885769
19 Anderson K, Fotheringham E, Hill A, Sissom B, Curtis K. High-speed holographic data storage at 500 Gbits/in.2. SMPTE Motion Imaging Journal, 2006, 115(5–6): 200–203
doi: 10.5594/J12231
20 Hoskins A, Ihas B, Anderson K, Curtis K. Monocular architecture. Japanese Journal of Applied Physics, 2008, 47(7): 5912–5914
doi: 10.1143/JJAP.47.5912
21 Shimada K, Ishii T, Ide T, Hughes S, Hoskins A, Curtis K. High density recording using monocular architecture for 500 GB consumer system. In: Proceedings of Optical Data Storage Conference (ODS), 2009, TuC2
22 Ishii T, Hosaka M, Hoshizawa T, Yamaguchi M, Koga S, Tanaka A. Terabyte holographic recording with monocular architecture. In: Proceedings of IEEE International Conference on Consumer Electronics (ICCE), 2012, 427–428
23 Orlov S S, Phillips W, Bjornson E, Takashima Y, Sundaram P, Hesselink L, Okas R, Kwan D, Snyder R. High-transfer-rate high-capacity holographic disk data-storage system. Applied Optics, 2004, 43(25): 4902–4914
doi: 10.1364/AO.43.004902 pmid: 15449477
24 Saito K, Hormai H. Holographic 3-D disk using in-line face-to-face recording. In: Proceedings of Optical Data Storage Conference (ODS), Aspen, Colorado, 1998, 162–164
25 Tan X D, Horimai H. Collinear holographic information storage technologies and system. Acta Optica Sinica, 2006, 26(6): 827–830 (in Chinese)
26 Horimai H, Tan X D. Holographic information storage system: today and future. IEEE Transactions on Magnetics, 2007, 43(2): 943–947
doi: 10.1109/TMAG.2006.888528
27 Shimura T, Ichimura S, Fujimura R, Kuroda K, Tan X, Horimai H. Analysis of a collinear holographic storage system: introduction of pixel spread function. Optics Letters, 2006, 31(9): 1208–1210
doi: 10.1364/OL.31.001208 pmid: 16642061
28 Jia W, Chen Z, Wen F J, Zhou C, Chow Y T, Chung P S. Coaxial holographic encoding based on pure phase modulation. Applied Optics, 2011, 50(34): H10–H15
doi: 10.1364/AO.50.000H10 pmid: 22192995
29 Jia W, Chen Z, Wen F J, Zhou C, Chow Y T, Chung P S. Single-beam data encoding using a holographic angular multiplexing technique. Applied Optics, 2011, 50(34): H30–H35
doi: 10.1364/AO.50.000H30 pmid: 22193021
30 Nobukawa T, Nomura T. Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD09
doi: 10.7567/JJAP.52.09LD09
31 Liu J Q, Cao L C, Li C M Y, Li J H, He Q S, Jin G F. Crosstalk analysis of multilayer collinear volume holographic data storage. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8847: 88470D
doi: 10.1117/12.2026508
32 Yu Y W, Chen C Y, Sun C C. Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array. Optics Letters, 2010, 35(8): 1130–1132
doi: 10.1364/OL.35.001130 pmid: 20410942
33 Horimai H, Tan X, Li J. Collinear holography. Applied Optics, 2005, 44(13): 2575–2579
doi: 10.1364/AO.44.002575 pmid: 15881066
34 O’Callaghan M J, McNeil J R, Walker C, Handschy M. Spatial light modulators with integrated phase masks for holographic data storage. In: Proceedings of Optical Data Storage Conference (ODS), Montreal, Canada, 2006, 23–25
35 Ishioka K, Tanaka K, Kojima N, Fukumoto A, Sugiki M. Optical collinear holographic recording system using a blue laser and a random phase mask. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 2005, ThD3
36 Lin X, Ke J, Wu A A, Xiao X, Tan X D. An effective phase modulation in the collinear holographic storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9006: 900607
doi: 10.1117/12.2035171
37 Tanaka K, Mori H, Hara M, Hirooka K, Fukumoto A, Watanabe K. High density recording of 270 Gbit/in.2 in a coaxial holographic recording system. Japanese Journal of Applied Physics, 2008, 47(7): 5891–5894
doi: 10.1143/JJAP.47.5891
38 Tanabe N, Yamatsu H, Kihara N. Experimental research on hologram number criterion for evaluating bit error rates of shift multiplexed holograms. In: Proceedings of Technical Digest of International Symposium on Optical Memories, 2004, 216–217
39 Tanaka K, Hara M, Tokuyama K, Hirooka K, Okamoto Y, Mori H, Fukumoto A, Okada K. 415 Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes. In: Proceedings of Optical Data Storage Conference, Lake Buena Vista, Florida, 2009, 64–66
40 Kimura K. Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure. Optics Letters, 2005, 30(8): 878–880
doi: 10.1364/OL.30.000878 pmid: 15865385
41 Orlic S, Rass J, Dietz E, Frohmann S. Multilayer recording in microholographic data storage. Journal of Optics, 2012, 14(7): 072401
doi: 10.1088/2040-8978/14/7/072401
42 McLeod R R, Daiber A J, McDonald M E, Robertson T L, Slagle T, Sochava S L, Hesselink L. Microholographic multilayer optical disk data storage. Applied Optics, 2005, 44(16): 3197–3207
doi: 10.1364/AO.44.003197 pmid: 15943253
43 Orlic S, Dietz E, Feid T, Frohmann S, Markoetter H, Rass J. Volumetric optical storage with microholograms. In: Proceedings of Optical Data Storage Topical Meeting, Lake Buena Vista, Florida, 2009, 1–3
44 Orlic S, Dietz E, Frohmann S, Rass J. Resolution-limited optical recording in 3D. Optics Express, 2011, 19(17): 16096–16105
doi: 10.1364/OE.19.016096 pmid: 21934972
45 Min C K, Kim D H, Jeon S, Park K S, Park Y P, Yang H, Park N C, Kim J. Analysis of inter-symbol-interference caused by shift misalignment of two objective lenses in high-NA micro holographic storage. Microsystem Technologies, 2010, 18(9–10): 1623–1631
46 Mikami H, Osawa K, Watanabe K. Optical phase multi-level recording in microhologram. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7730: 77301D
doi: 10.1117/12.866058
47 Mikami H, Osawa K, Tatsu E, Watanabe K. Experimental demonstration of optical phase multilevel recording in microhologram. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD01
doi: 10.7567/JJAP.51.08JD01
48 Mikami H, Watanabe K. Microholographic optical data storage with spatial mode multiplexing. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD02
doi: 10.7567/JJAP.52.09LD02
49 Katayama R. Proposal for angular momentum multiplexing in microholographic recording. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD11
doi: 10.7567/JJAP.52.09LD11
50 Orlic S, Dietz E, Frohmann S, Gortner J, Mueller C. Microholographic multilayer recording at DVD density. In: Proceedings of Optical Data Storage Conference (ODS), 2007, MB4
51 Horigome T, Saito K, Miyamoto H, Hayashi K, Fujita G, Yamatsu H, Tanabe N, Kobayashi S, Uchiyama H. Recording capacity enhancement of micro-reflector recording. Japanese Journal of Applied Physics, 2008, 47(7): 5881–5884
doi: 10.1143/JJAP.47.5881
52 Saito K, Kobayashi S. Analysis of micro-reflector 3-D optical disc recording. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2006, 6282: 628213
doi: 10.1117/12.685231
53 Boden E P, Chan K P, Dylov D V, Kim E M, Lorraine P W, McCloskey P J, Misner M J, Natarajan A, Ostroverkhov V, Pickett J E, Shi X, Takashima Y, Watkins V H. Recent progress in micro-holographic storage. In: Proceedings of Joint International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), 2011, OWA1
54 Sutter K, Hulliger J, Günter P. Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. Solid State Communications, 1990, 74(8): 867–870
doi: 10.1016/0038-1098(90)90952-8
55 B?ssler H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phyical Status Solidi B, 1993, 175(1): 15–56
doi: 10.1002/pssb.2221750102
56 Eickmans J, Bieringer T, Kostromine S, Berneth H, Thoma R. Photoaddressable polymers: a new class of materials for optical data storage and holographic memories. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 3B): 1835–1836
doi: 10.1143/JJAP.38.1835
57 Loerincz E, Ujhelyi F, Sueto A, Szarvas G, Koppa P, Erdei G, Hvilsted S, Ramanujam P S, Richter P I. Rewritable holographic memory card system. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2000, 4090: 185–190
doi: 10.1117/12.399357
58 Lawrence B, Ostroverkhov V, Shi X, Longley K, Boden E P. Micro-holographic storage and threshold holographic materials. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), 2008, TD05–06
59 Lohr S. GE’s Breakthrough Can Put 100 DVDs on a Disc. The New York Times, 26. April2009
60 Close D H, Jacobson A D, Margerum J D, Brault R G, McClung F J. Hologram recording on photopolymer materials. Applied Physics Letters, 1969, 14(5): 159–160
doi: 10.1063/1.1652756
61 Bruder F K, Hagen R, R?lle T, Weiser M S, F?cke T. From the surface to volume: concepts for the next generation of optical-holographic data-storage materials. Angewandte Chemie International Edition, 2011, 50(20): 4552–4573
doi: 10.1002/anie.201002085 pmid: 21538730
62 Guo J X, Gleeson M R, Sheridan J T. A review of the optimisation of photopolymer materials for holographic data storage. Physics Research International, 2012, 803439
doi: 10.1155/2012/803439
63 Li X, Bullen C, Chon J W M, Evans R A, Gu M. Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer. Applied Physics Letters, 2007, 90(16): 161116
doi: 10.1063/1.2724902
64 Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Applied Physics Letters, 2002, 81(22): 4121–4123
doi: 10.1063/1.1525391
65 Trentler T J, Boyd J E, Colvin V L. Epoxy resin photopolymer composites for volume holography. Chemistry of Materials, 2000, 12(5): 1431–1438
doi: 10.1021/cm9908062
66 Gleeson M R, Sheridan J T, Bruder F K, R?lle T, Berneth H, Weiser M S, F?cke T. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model. Optics Express, 2011, 19(27): 26325–26342
doi: 10.1364/OE.19.026325 pmid: 22274217
67 Gleeson M R, Sabol D, Liu S, Close C E, Kelly J V, Sheridan J T. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length. Journal of the Optical Society of America B: Optical Physics, 2008, 25(3): 396–406
doi: 10.1364/JOSAB.25.000396
68 Guo J, Gleeson M R, Liu S, Sheridan J T. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. experimental results. Journal of Optics, 2011, 13(9): 095602
doi: 10.1088/2040-8978/13/9/095602
69 Liu X, Tomita Y, Oshima J, Chikama K, Matsubara K, Nakashima T, Kawai T. Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%. Applied Physics Letters, 2009, 95(26): 261109
doi: 10.1063/1.3276914
70 Krul L P, Matusevich V, Hoff D, Kowarschik R, Matusevich Y I, Butovskaya G V, Murashko E A. Modified polymethylmethacrylate as a base for thermostable optical recording media. Optics Express, 2007, 15(14): 8543–8549
doi: 10.1364/OE.15.008543 pmid: 19547188
71 Waldman D A, Li H Y S, Horner M G. Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material. Journal of Imaging Science and Technology, 1997, 41(5): 497–514
72 Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage at greater than 100 bits/μm2. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5216: 10
doi: 10.1117/12.513614
73 Dhar L, Hale A, Katz H E, Schilling M, Schnoes M G, Schilling F C. Recording media that exhibit high dynamic range for digital holographic data storage. Optics Letters, 1999, 24(7): 487–489
doi: 10.1364/OL.24.000487 pmid: 18071548
74 Suzuki N, Tomita Y, Ohmori K, Hidaka M, Chikama K. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording. Optics Express, 2006, 14(26): 12712–12719
doi: 10.1364/OE.14.012712 pmid: 19532163
75 Shelby R M, Waldman D A, Ingwall R T. Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media. Optics Letters, 2000, 25(10): 713–715
doi: 10.1364/OL.25.000713 pmid: 18064160
76 Dhar L, Curtis K, Tackitt M, Schilling M, Campbell S, Wilson W, Hill A, Boyd C, Levinos N, Harris A. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems. Optics Letters, 1998, 23(21): 1710–1712
doi: 10.1364/OL.23.001710 pmid: 18091892
77 Aprilis Inc. http://www.aprilisinc.com/biometrics_imager.htm
78 Anderson K, Ayres M, Sissom B, Askham F. Holographic data storage: rebirthing a commercialization effort. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9006: 90060C
doi: 10.1117/12.2037429
79 Askham F U S. Patents, 8323854, 2012
80 Park K, Kim B S, Lee J. A 6/9 four-ary modulation code for four-level holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE05
doi: 10.7567/JJAP.52.09LE05
81 Heanue J F, Bashaw M C, Hesselink L. Channel codes for digital holographic data storage. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1995, 12(11): 2432–2439
doi: 10.1364/JOSAA.12.002432
82 Vadde V, Kumar B V K V. Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage. Applied Optics, 1999, 38(20): 4374–4386
doi: 10.1364/AO.38.004374 pmid: 18323924
83 Heanue J F, Gürkan K, Hesselink L. Signal detection for page-accessoptical memories with intersymbol interference. Applied Optics, 1996, 35(14): 2431–2438
doi: 10.1364/AO.35.002431 pmid: 21085379
84 Chugg K M, Chen X P, Neifeld M A. Two-dimensional equalization in coherent and incoherent page-oriented optical memory. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1999, 16(3): 549–562
doi: 10.1364/JOSAA.16.000549
85 Keskinoz M, Kumar B V K V. Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels. Applied Optics, 2004, 43(6): 1368–1378
doi: 10.1364/AO.43.001368 pmid: 15008543
86 Kim T, Kong G, Choi S. Two-dimensional equalization using bilinear recursive polynomial model for holographic data storage systems. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD05
doi: 10.7567/JJAP.51.08JD05
87 Srinivasa S G. Constrained Coding and Signal Processing for Holography. PhD Thesis, Georgia Institute of Technology, 2006
88 Chen Y T, Ou-Yang M, Lee C C. A recognition method in holographic data storage system by using structural similarity. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8855: 88550J
doi: 10.1117/12.2022962
89 Chen C Y, Chiueh T D. Hardware implementation of pixel detection in gray-scale holographic data storage systems. Applied Optics, 2012, 51(34): 8228–8235
doi: 10.1364/AO.51.008228 pmid: 23207395
90 Kong G, Choi S. Effective two-dimensional partial response maximum likelihood detection scheme for holographic data storage systems. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JB06
doi: 10.7567/JJAP.51.08JB06
91 Koo K, Kim S Y, Kim S W. Modified two-dimensional soft output Viterbi algorithm with two-dimensional partial response target for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8): 08JB03
92 Koo K, Kim S Y, Jeong J J, Kim S W. Two-dimensional soft output Viterbi algorithm with a variable reliability factor for holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE03
doi: 10.7567/JJAP.52.09LE03
93 Burr G W. Holographic data storage with arbitrarily misaligned data pages. Optics Letters, 2002, 27(7): 542–544
doi: 10.1364/OL.27.000542 pmid: 18007859
94 Chen C Y, Fu C C, Chiueh T D. Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage. Applied Optics, 2008, 47(36): 6784–6795
doi: 10.1364/AO.47.006784 pmid: 19104530
95 Gu H R, Cao L C, He Q S, Jin G F. Compensation for pixel mismatch based on a three-pixel model in volume holographic data storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7848: 78480
doi: 10.1117/12.868997
96 Ayres M, Hoskins A, Curtis K. Image oversampling for page-oriented optical data storage. Applied Optics, 2006, 45(11): 2459–2464
doi: 10.1364/AO.45.002459 pmid: 16623243
97 Ayres M R U S. Patents, 7623279, 2009
98 Ashley J J, Marcus B H. Two-dimensional low-pass filtering codes. IEEE Transactions on Communications, 1998, 46(6): 724–727
doi: 10.1109/26.681399
99 Immink K A S, Siegel P H, Wolf J K. Codes for digital recorders. IEEE Transactions on Information Theory, 1998, 44(6): 2260–2299
doi: 10.1109/18.720539
100 Srinivasa S G, McLaughlin S W. Enumeration algorithms for constructing (d(1), infinity, d(2), infinity) run length limited arrays: capacity estimates and coding schemes. In: Proceedings of IEEE Information Theory Workshop, 2004, 141–146
101 Kim S Y, Lee J. A simple 2/3 modulation code for multi-level holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE04
doi: 10.7567/JJAP.52.09LE04
102 Pishro-Nik H, Rahnavard N, Ha J, Fekri F, Adibi A. Low-density parity-check codes for volume holographic memory systems. Applied Optics, 2003, 42(5): 861–870
doi: 10.1364/AO.42.000861 pmid: 12593489
103 Kim J, Lee J. Simplified decoding of trellis-based error-correcting modulation codes using the M-algorithm for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD02
doi: 10.7567/JJAP.51.08JD02
104 Gallager R G. Low-density parity-check codes. I.R.E. Transactions on Information Theory, 1962, 8(1): 21–28
doi: 10.1109/TIT.1962.1057683
105 MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(18): 1645–1646
doi: 10.1049/el:19961141
106 Yoon P, Chung B, Kim H, Park J, Park G. Low-density parity-check code for holographic data storage system with balanced modulation code. Japanese Journal of Applied Physics, 2008, 47(7): 5981–5988
doi: 10.1143/JJAP.47.5981
107 Ungerboeck G. Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 1982, 28(1): 55–67
doi: 10.1109/TIT.1982.1056454
108 Kim J, Wee J K, Lee J. Error correcting 4/6 modulation codes for holographic data storage. Japanese Journal of Applied Physics, 2010, 49(8): 08KB04
doi: 10.1143/JJAP.49.08KB04
109 Kim Y, Kong G, Choi S. Error correcting capable 2/4 modulation code using trellis coded modulation in holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD08
doi: 10.7567/JJAP.51.08JD08
110 Imai H. Two-dimensional fire codes. IEEE Transactions on Information Theory, 1973, 19(6): 796–806
doi: 10.1109/TIT.1973.1055093
111 Abdel-Ghaffar K A S, McEliece R J, van Tilborg H C K. Two-dimensional burst identification codes and their use in burst correction. IEEE Transactions on Information Theory, 1988, 34(3): 494–504
doi: 10.1109/18.6029
112 Blaum M, Bruck J, Vardy A. Interleaving schemes for multidimensional cluster errors. IEEE Transactions on Information Theory, 1998, 44(2): 730–743
doi: 10.1109/18.661516
113 Etzion T, Vardy A. Two-dimensional interleaving schemes with repetitions: constructions and bounds. IEEE Transactions on Information Theory, 2002, 48(2): 428–457
doi: 10.1109/18.978765
114 Jiang A A, Bruck J. Multicluster interleaving on paths and cycles. IEEE Transactions on Information Theory, 2005, 51(2): 597–611
doi: 10.1109/TIT.2004.840893
115 Gu H R, Cao L C, He Q S, Jin G F. Reed-Solomon volumetric coding with matched interleaving for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8R): 082502
doi: 10.7567/JJAP.51.082502
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed