Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (3) : 312-317     DOI: 10.1007/s12200-013-0332-z
Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems
Bushra NAWAZ, Rameez ASIF()
Telecommunication Engineering Department, University of Engineering & Technology, Taxila 47050, Pakistan
Download: PDF(431 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This paper has designed 2-channel dense wavelength division multiplexing (DWDM) chaotic system at the frequencies of 193.1 and 193.2 THz, respectively. The optical chaotic signals were produced by using the semiconductor laser that is numerically modeled by employing laser rate equations. These two channels were multiplexed and then propagated through single mode optical fiber (SMF) of 80 km length with dispersion compensating fiber of 16 km length. Erbium doped fiber amplifier (EDFA) was used to compensate the power losses in the SMF. In this paper, we investigated the effects of polarization mode dispersion (PMD) and nonlinearities especially stimulated Raman scattering (SRS) on 2 channel DWDM chaotic communication system by varying the length of the SMF and value of differential group delay (DGD).

Keywords chaos      chaotic signal      chaotic synchronization      dense wavelength division multiplexing (DWDM) chaotic communication      polarization mode dispersion (PMD)      stimulated Raman scattering (SRS)     
Corresponding Authors: ASIF Rameez,   
Issue Date: 05 September 2013
 Cite this article:   
Bushra NAWAZ,Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
E-mail this article
E-mail Alert
Articles by authors
Bushra NAWAZ
Rameez ASIF
a0active layer coefficient1.5e-9
vggroup velocity8.5e9 cm/s
?gain compression factor1e-17 cm3
Ntcarrier density transparency1e18 cm-3
βfraction of spontaneous emission coupled into the lasing mode8e-7
Γmode confinement factor0.4
Vactive layer volume1.5e-10 cm3
τpphoton life time3e-12 s
τNelectron life time1e-9 s
Aline width enhancement factor5
Tab.1  Values of parameters of semiconductor laser
Fig.1  Block diagram of chaotic DWDM system
Fig.2  Chaotic signal at transmitter (a) and receiver (b)
Fig.3  Synchronization graphs with parameter of PMD at (a) 0; (b) 0.5 and (c) 1.0 ps/km
Fig.4  Synchronization graphs with parameter of PMD at (a) 0; (b) 0.5 and (c) 1.0 ps/km including nonlinear effects
Fig.5  Frequency spectrum showing SRS
Fig.6  Correlation coefficient versus distance. (a) Only PMD effects; (b) both PMD and nonlinear effects
1 Pecora L M, Carroll T L. Synchronization in chaotic systems. Physical Review Letters , 1990, 64(8): 821-824
doi: 10.1103/PhysRevLett.64.821 pmid:10042089
2 Donati S, Mirasso C R. Introduction to the feature section on optical chaos and applications to cryptography. IEEE Journal of Quantum Electronics , 2002, 38(9): 1138-1140
doi: 10.1109/JQE.2002.801951
3 Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garc?′a-Ojalvo J, Mirasso C R, Pesquera L, Shore K A.Chaos-based communications at high bit rates using commercial fibre-optic links. Nature , 2005, 438(7066): 343-346
doi: 10.1038/nature04275
4 Ali S Z, Islam M K, Zafrullah M. Effect of parametric variation on generation and enhancement of chaos in erbium-doped fiber-ring lasers. Optical Engineering (Redondo Beach, Calif.) , 2010, 49(10): 105002-1-105002-12
5 Zhang F, Chu P L, Lai R, Chen G R. Dual-wavelength chaos generation and synchronisation in erbium-doped fiber lasers. IEEE Photonics Technology Letters , 2005, 17(3): 549-551
doi: 10.1109/LPT.2004.842390
6 Zhang J Z, Wang A B, Wang J F, Wang Y C. Wavelength division multiplexing of chaotic secure and fiber-optic communications. Optics Express , 2009, 17(8): 6357-6367
doi: 10.1364/OE.17.006357 pmid:19365461
7 Luo L G, Chu P L. Optical secure communications with chaotic erbium-doped fiber lasers. Journal of the Optical Society of America B, Optical Physics , 1998, 15(10): 2524-2530
doi: 10.1364/JOSAB.15.002524
8 Menyuk C R, Marks B S. Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems. Journal of Lightwave Technology , 2006, 24(7): 2806-2826
doi: 10.1109/JLT.2006.875953
9 Zhang F, Chu P L. Effect of transmission fiber on chaos communication system based on erbium-doped fiber ring laser. Journal of Lightwave Technology , 2003, 21(12): 3334-3343
doi: 10.1109/JLT.2003.821721
10 Argyris A, Grivas E, Bogris A, Syvridis D. Transmission effects in wavelength division multiplexed chaotic optical communication systems. Journal of Lightwave Technology , 2010, 28(21): 3107-3114
11 Asif R, Lin C Y, Holtmannspoetter M, Schmauss B. Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems. Optics Communications , 2012, 285(7): 1814-1818
doi: 10.1016/j.optcom.2011.11.120
12 Asif R, Lin C Y, Schmauss B. Impact of channel baudrate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links. Optics Communications , 2011, 284(24): 5673-5677
doi: 10.1016/j.optcom.2011.08.050
13 Asif R, Usman M, Lin C Y, Schmauss B. Application of a digital non-linear compensation algorithm for evaluating the performance of root-raised-cosine pulses in 112 Gbit/s DP-QPSK transmission. Journal of Optics , 2012, 14(9): 095402
doi: 10.1088/2040-8978/14/9/095402
14 Asif R, Lin C Y, Holtmannspoetter M, Schmauss B. Evaluation of correlative coding and DP-16QAM n-channel 112 Gbit/s coherent transmission: digital non-linear compensation perspective. Optics Express , 2013, 21(1): 781-788
doi: 10.1364/OE.21.000781 pmid:23388970
15 Agrawal G P. Nonlinear Fiber Optics. 3rd ed. San Diego: Academic Press, 2001
16 Pietrzyk S, Szczesny W, Marciniak M. Power penalty caused by stimulated Raman scattering in WDM systems. Journal of Telecommunications And Information Technology , 2000, 1(2): 52-58
Related articles from Frontiers Journals
[1] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[2] Lingbo ZENG, Tao DENG, Zhengmao WU, Jiagui WU, Guangqiong XIA. Impacts of mismatched intrinsic parameter on leader-laggard synchronization between two mutually coupled VCSELs[J]. Front Optoelec Chin, 2011, 4(3): 298-307.
Full text