Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (1) : 3-24     DOI: 10.1007/s12200-012-0301-y
REVIEW ARTICLE |
Photonic crystal fibers, devices, and applications
Wei JIN(), Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Download: PDF(1824 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews different types of air-silica photonic crystal fibers (PCFs), discusses their novel properties, and reports recent advances in PCF components and sensors as well as techniques for splicing PCFs to standard telecomm fibers.

Keywords photonic crystal fibers (PCFs)      microstructured optical fibers      hollow-core photonic bandgap fibers (HC PBFs)      optical fiber devices      optical fiber sensors     
Corresponding Authors: JIN Wei,Email:eewjin@polyu.edu.hk   
Issue Date: 05 March 2013
 Cite this article:   
Wei JIN,Jian JU,Hoi Lut HO, et al. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0301-y
http://journal.hep.com.cn/foe/EN/Y2013/V6/I1/3
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei JIN
Jian JU
Hoi Lut HO
Yeuk Lai HOO
Ailing ZHANG
Fig.1  Cross-sections of three types of air-silica IG-PCFs from Crystal-Fiber A/S. (a) Endlessly single mode PCF; (b) highly nonlinear PCF; (c) Hi-Bi PCF
Fig.1  Cross-sections of three types of air-silica IG-PCFs from Crystal-Fiber A/S. (a) Endlessly single mode PCF; (b) highly nonlinear PCF; (c) Hi-Bi PCF
Fig.1  Cross-sections of three types of air-silica IG-PCFs from Crystal-Fiber A/S. (a) Endlessly single mode PCF; (b) highly nonlinear PCF; (c) Hi-Bi PCF
Fig.1  Cross-sections of three types of air-silica IG-PCFs from Crystal-Fiber A/S. (a) Endlessly single mode PCF; (b) highly nonlinear PCF; (c) Hi-Bi PCF
Fig.2  (a) Scanning electron microscopy (SEM) and (b) transmission characteristics of HC PBF (HC-1550-02). The center wavelength of this fiber is 1550 nm and the transmission window is 120 nm
Fig.2  (a) Scanning electron microscopy (SEM) and (b) transmission characteristics of HC PBF (HC-1550-02). The center wavelength of this fiber is 1550 nm and the transmission window is 120 nm
Fig.2  (a) Scanning electron microscopy (SEM) and (b) transmission characteristics of HC PBF (HC-1550-02). The center wavelength of this fiber is 1550 nm and the transmission window is 120 nm
Fig.2  (a) Scanning electron microscopy (SEM) and (b) transmission characteristics of HC PBF (HC-1550-02). The center wavelength of this fiber is 1550 nm and the transmission window is 120 nm
Fig.3  Contour plot of calculated mode field for PCF with hexagonal lattice. Λ = 7.33 μm, = 3.38 μm. The operating wavelength is 1550 nm
Fig.3  Contour plot of calculated mode field for PCF with hexagonal lattice. Λ = 7.33 μm, = 3.38 μm. The operating wavelength is 1550 nm
Fig.3  Contour plot of calculated mode field for PCF with hexagonal lattice. Λ = 7.33 μm, = 3.38 μm. The operating wavelength is 1550 nm
Fig.3  Contour plot of calculated mode field for PCF with hexagonal lattice. Λ = 7.33 μm, = 3.38 μm. The operating wavelength is 1550 nm
Fig.4  (a) Single-mode–multimode phase diagram. Solid line shows phase boundary obtained by multi-pole method and circles correspond to solutions to = π; (b) as function of Λ/ for /Λ = 0.43, 0.44, 0.45, 0.475, 0.50, 0.55, 0.60, 0.65, 0.70 (from lower to upper curves). The circles correspond to the cutoff wavelength by Eq. (2) []
Fig.4  (a) Single-mode–multimode phase diagram. Solid line shows phase boundary obtained by multi-pole method and circles correspond to solutions to = π; (b) as function of Λ/ for /Λ = 0.43, 0.44, 0.45, 0.475, 0.50, 0.55, 0.60, 0.65, 0.70 (from lower to upper curves). The circles correspond to the cutoff wavelength by Eq. (2) []
Fig.4  (a) Single-mode–multimode phase diagram. Solid line shows phase boundary obtained by multi-pole method and circles correspond to solutions to = π; (b) as function of Λ/ for /Λ = 0.43, 0.44, 0.45, 0.475, 0.50, 0.55, 0.60, 0.65, 0.70 (from lower to upper curves). The circles correspond to the cutoff wavelength by Eq. (2) []
Fig.4  (a) Single-mode–multimode phase diagram. Solid line shows phase boundary obtained by multi-pole method and circles correspond to solutions to = π; (b) as function of Λ/ for /Λ = 0.43, 0.44, 0.45, 0.475, 0.50, 0.55, 0.60, 0.65, 0.70 (from lower to upper curves). The circles correspond to the cutoff wavelength by Eq. (2) []
Fig.5  Normalized cutoff wavelengths of 2nd order and 3rd order modes as functions of /Λ [].
Fig.5  Normalized cutoff wavelengths of 2nd order and 3rd order modes as functions of /Λ [].
Fig.5  Normalized cutoff wavelengths of 2nd order and 3rd order modes as functions of /Λ [].
Fig.5  Normalized cutoff wavelengths of 2nd order and 3rd order modes as functions of /Λ [].
Fig.6  Vector transverse electric field distribution of (a) () mode; (b) () mode; and (c) mode; (d) mode; (e) and (f) modes at 1550 nm. The super-position of ,, and modes gives the familiar LP-like mode patterns []
Fig.6  Vector transverse electric field distribution of (a) () mode; (b) () mode; and (c) mode; (d) mode; (e) and (f) modes at 1550 nm. The super-position of ,, and modes gives the familiar LP-like mode patterns []
Fig.6  Vector transverse electric field distribution of (a) () mode; (b) () mode; and (c) mode; (d) mode; (e) and (f) modes at 1550 nm. The super-position of ,, and modes gives the familiar LP-like mode patterns []
Fig.6  Vector transverse electric field distribution of (a) () mode; (b) () mode; and (c) mode; (d) mode; (e) and (f) modes at 1550 nm. The super-position of ,, and modes gives the familiar LP-like mode patterns []
Fig.7  Beat lengths between fundamental mode and four second-order modes as functions of wavelength []
Fig.7  Beat lengths between fundamental mode and four second-order modes as functions of wavelength []
Fig.7  Beat lengths between fundamental mode and four second-order modes as functions of wavelength []
Fig.7  Beat lengths between fundamental mode and four second-order modes as functions of wavelength []
Fig.8  AOTF based on TM PCF []
Fig.8  AOTF based on TM PCF []
Fig.8  AOTF based on TM PCF []
Fig.8  AOTF based on TM PCF []
Fig.9  Tuning characteristics of AOTF. (a) Wavelength tuning from 700 to 1700 nm; (b) relationships between center wavelength, 3-dB linewidth of notch and acoustic frequency []
Fig.9  Tuning characteristics of AOTF. (a) Wavelength tuning from 700 to 1700 nm; (b) relationships between center wavelength, 3-dB linewidth of notch and acoustic frequency []
Fig.9  Tuning characteristics of AOTF. (a) Wavelength tuning from 700 to 1700 nm; (b) relationships between center wavelength, 3-dB linewidth of notch and acoustic frequency []
Fig.9  Tuning characteristics of AOTF. (a) Wavelength tuning from 700 to 1700 nm; (b) relationships between center wavelength, 3-dB linewidth of notch and acoustic frequency []
Fig.10  Schematic cross section of Hi-Bi PCF
Fig.10  Schematic cross section of Hi-Bi PCF
Fig.10  Schematic cross section of Hi-Bi PCF
Fig.10  Schematic cross section of Hi-Bi PCF
Fig.11  Effective indices of - and -polarization as functions of wavelength for Hi-Bi PCF with six rings of air holes with Λ = 2.2 μm, /Λ = 0.40, /Λ = 0.95 []
Fig.11  Effective indices of - and -polarization as functions of wavelength for Hi-Bi PCF with six rings of air holes with Λ = 2.2 μm, /Λ = 0.40, /Λ = 0.95 []
Fig.11  Effective indices of - and -polarization as functions of wavelength for Hi-Bi PCF with six rings of air holes with Λ = 2.2 μm, /Λ = 0.40, /Λ = 0.95 []
Fig.11  Effective indices of - and -polarization as functions of wavelength for Hi-Bi PCF with six rings of air holes with Λ = 2.2 μm, /Λ = 0.40, /Λ = 0.95 []
Fig.12  Cutoff wavelength as function of pitch Λ for different ratios of /Λ. Circle: -polarization, dot: -polarization []. (a) /Λ = 0.30; (b) /Λ = 0.35; (c) /Λ = 0.40; (d) /Λ = 0.50
Fig.12  Cutoff wavelength as function of pitch Λ for different ratios of /Λ. Circle: -polarization, dot: -polarization []. (a) /Λ = 0.30; (b) /Λ = 0.35; (c) /Λ = 0.40; (d) /Λ = 0.50
Fig.12  Cutoff wavelength as function of pitch Λ for different ratios of /Λ. Circle: -polarization, dot: -polarization []. (a) /Λ = 0.30; (b) /Λ = 0.35; (c) /Λ = 0.40; (d) /Λ = 0.50
Fig.12  Cutoff wavelength as function of pitch Λ for different ratios of /Λ. Circle: -polarization, dot: -polarization []. (a) /Λ = 0.30; (b) /Λ = 0.35; (c) /Λ = 0.40; (d) /Λ = 0.50
Fig.13  Confinement loss for - and -polarization for SPSM PCF designed to work at (a) 1.30 μm and (b) 1.55 μm. Solid lines: -polarization; dashed lines: -polarization []
Fig.13  Confinement loss for - and -polarization for SPSM PCF designed to work at (a) 1.30 μm and (b) 1.55 μm. Solid lines: -polarization; dashed lines: -polarization []
Fig.13  Confinement loss for - and -polarization for SPSM PCF designed to work at (a) 1.30 μm and (b) 1.55 μm. Solid lines: -polarization; dashed lines: -polarization []
Fig.13  Confinement loss for - and -polarization for SPSM PCF designed to work at (a) 1.30 μm and (b) 1.55 μm. Solid lines: -polarization; dashed lines: -polarization []
Fig.14  Modal dispersion curve of Hi-Bi PCF. Solid lines represent the non-degenerate LP modes and dash lines represent the LP (even) modes
Fig.14  Modal dispersion curve of Hi-Bi PCF. Solid lines represent the non-degenerate LP modes and dash lines represent the LP (even) modes
Fig.14  Modal dispersion curve of Hi-Bi PCF. Solid lines represent the non-degenerate LP modes and dash lines represent the LP (even) modes
Fig.14  Modal dispersion curve of Hi-Bi PCF. Solid lines represent the non-degenerate LP modes and dash lines represent the LP (even) modes
Fig.15  Transverse electric field distribution of (a) ; (b) ; (c) (even); and (d) (even) modes at 1.3 μm []
Fig.15  Transverse electric field distribution of (a) ; (b) ; (c) (even); and (d) (even) modes at 1.3 μm []
Fig.15  Transverse electric field distribution of (a) ; (b) ; (c) (even); and (d) (even) modes at 1.3 μm []
Fig.15  Transverse electric field distribution of (a) ; (b) ; (c) (even); and (d) (even) modes at 1.3 μm []
Fig.16  Evolution of far-field patterns as function of phase difference between LP and LP (even) modes
Fig.16  Evolution of far-field patterns as function of phase difference between LP and LP (even) modes
Fig.16  Evolution of far-field patterns as function of phase difference between LP and LP (even) modes
Fig.16  Evolution of far-field patterns as function of phase difference between LP and LP (even) modes
Fig.17  Strain sensitivity as function of wavelength [,]
Fig.17  Strain sensitivity as function of wavelength [,]
Fig.17  Strain sensitivity as function of wavelength [,]
Fig.17  Strain sensitivity as function of wavelength [,]
Fig.18  Measured temperature sensitivity for -polarization (circle) and -polarization (star) as function of optical wavelength. Solid and dashed lines are curve fitting results of the measured data []
Fig.18  Measured temperature sensitivity for -polarization (circle) and -polarization (star) as function of optical wavelength. Solid and dashed lines are curve fitting results of the measured data []
Fig.18  Measured temperature sensitivity for -polarization (circle) and -polarization (star) as function of optical wavelength. Solid and dashed lines are curve fitting results of the measured data []
Fig.18  Measured temperature sensitivity for -polarization (circle) and -polarization (star) as function of optical wavelength. Solid and dashed lines are curve fitting results of the measured data []
Fig.19  SC spectrum reported by Ranka et al. [] in 2000
Fig.19  SC spectrum reported by Ranka et al. [] in 2000
Fig.19  SC spectrum reported by Ranka et al. [] in 2000
Fig.19  SC spectrum reported by Ranka et al. [] in 2000
Fig.20  SEM photo of cross-section of highly nonlinear fiber from Crystal- Fiber A/S. Diameter of the central silica region is 1.7 μm. and
Fig.20  SEM photo of cross-section of highly nonlinear fiber from Crystal- Fiber A/S. Diameter of the central silica region is 1.7 μm. and
Fig.20  SEM photo of cross-section of highly nonlinear fiber from Crystal- Fiber A/S. Diameter of the central silica region is 1.7 μm. and
Fig.20  SEM photo of cross-section of highly nonlinear fiber from Crystal- Fiber A/S. Diameter of the central silica region is 1.7 μm. and
Fig.21  Relative sensitivity of Crystal Fiber’s PCF as function of wavelength []
Fig.21  Relative sensitivity of Crystal Fiber’s PCF as function of wavelength []
Fig.21  Relative sensitivity of Crystal Fiber’s PCF as function of wavelength []
Fig.21  Relative sensitivity of Crystal Fiber’s PCF as function of wavelength []
Fig.22  Model for studying dynamics of gas diffusion into holes of PCF
Fig.22  Model for studying dynamics of gas diffusion into holes of PCF
Fig.22  Model for studying dynamics of gas diffusion into holes of PCF
Fig.22  Model for studying dynamics of gas diffusion into holes of PCF
Fig.23  Calculated transmission bands when holes in HC-1550-02 PBF are filled with various refractive index liquids []
Fig.23  Calculated transmission bands when holes in HC-1550-02 PBF are filled with various refractive index liquids []
Fig.23  Calculated transmission bands when holes in HC-1550-02 PBF are filled with various refractive index liquids []
Fig.23  Calculated transmission bands when holes in HC-1550-02 PBF are filled with various refractive index liquids []
Fig.24  Transmission characteristics of HC-1550-02 fiber when hollow-core and cladding holes are filled with materials of different refractive indexes []
Fig.24  Transmission characteristics of HC-1550-02 fiber when hollow-core and cladding holes are filled with materials of different refractive indexes []
Fig.24  Transmission characteristics of HC-1550-02 fiber when hollow-core and cladding holes are filled with materials of different refractive indexes []
Fig.24  Transmission characteristics of HC-1550-02 fiber when hollow-core and cladding holes are filled with materials of different refractive indexes []
Fig.25  HC-PBF polarization controller []
Fig.25  HC-PBF polarization controller []
Fig.25  HC-PBF polarization controller []
Fig.25  HC-PBF polarization controller []
Fig.26  (a) SEM image of original HC-1550-02 PBF; (b) cross-section and (c) side view of valley created by CO laser irradiation. Only segments of the valley are shown in (c) []
Fig.26  (a) SEM image of original HC-1550-02 PBF; (b) cross-section and (c) side view of valley created by CO laser irradiation. Only segments of the valley are shown in (c) []
Fig.26  (a) SEM image of original HC-1550-02 PBF; (b) cross-section and (c) side view of valley created by CO laser irradiation. Only segments of the valley are shown in (c) []
Fig.26  (a) SEM image of original HC-1550-02 PBF; (b) cross-section and (c) side view of valley created by CO laser irradiation. Only segments of the valley are shown in (c) []
Fig.27  Evolution of polarization extinction ratio of HC-PBF polarizer for increasing degree of air-hole collapse in the cladding, corresponding to increasing number of scanning cycles []
Fig.27  Evolution of polarization extinction ratio of HC-PBF polarizer for increasing degree of air-hole collapse in the cladding, corresponding to increasing number of scanning cycles []
Fig.27  Evolution of polarization extinction ratio of HC-PBF polarizer for increasing degree of air-hole collapse in the cladding, corresponding to increasing number of scanning cycles []
Fig.27  Evolution of polarization extinction ratio of HC-PBF polarizer for increasing degree of air-hole collapse in the cladding, corresponding to increasing number of scanning cycles []
Fig.28  Micro-channel drilled into core of HC-PBF, allowing faster response for gas detection. (a) Side view; (b) cross-section
Fig.28  Micro-channel drilled into core of HC-PBF, allowing faster response for gas detection. (a) Side view; (b) cross-section
Fig.28  Micro-channel drilled into core of HC-PBF, allowing faster response for gas detection. (a) Side view; (b) cross-section
Fig.28  Micro-channel drilled into core of HC-PBF, allowing faster response for gas detection. (a) Side view; (b) cross-section
fibercore diameter/μmrelative hole size dpitch Λ /μmMFD/μmnumerical aperture/NA
LMA-1010.710.467.148.50.14
HC-1550-0210.9>90%*3.87.50.12
LMA-54.50.442.94.10.23
NL-3.3-8803.4>89%*3.02.20.41
PM-1550-01large hole 0.97small hole 0.514.17long axis 3.6short axis 3.1
SMF-288.310.40.14
Tab.1  Different PCFs and fiber parameter at 1550 nm []
Fig.29  (a) Splicing SMF to PCF with offset of the joint to the central axis of arc discharge; (b) splicing SMF to PCF having the same MFD; (c) splicing SMF to small-core PCF with an intermediate fiber; (d) splicing SMF to small-core PCF with a controlled collapse of air-holes to enlarge the model field []
Fig.29  (a) Splicing SMF to PCF with offset of the joint to the central axis of arc discharge; (b) splicing SMF to PCF having the same MFD; (c) splicing SMF to small-core PCF with an intermediate fiber; (d) splicing SMF to small-core PCF with a controlled collapse of air-holes to enlarge the model field []
Fig.29  (a) Splicing SMF to PCF with offset of the joint to the central axis of arc discharge; (b) splicing SMF to PCF having the same MFD; (c) splicing SMF to small-core PCF with an intermediate fiber; (d) splicing SMF to small-core PCF with a controlled collapse of air-holes to enlarge the model field []
Fig.29  (a) Splicing SMF to PCF with offset of the joint to the central axis of arc discharge; (b) splicing SMF to PCF having the same MFD; (c) splicing SMF to small-core PCF with an intermediate fiber; (d) splicing SMF to small-core PCF with a controlled collapse of air-holes to enlarge the model field []
Fig.30  End views of LMA-5 after (a) two and (b) seven discharges. The fusion duration, fusion current, and offset are respectively 0.3 s, 10 mA and 50 μm []
Fig.30  End views of LMA-5 after (a) two and (b) seven discharges. The fusion duration, fusion current, and offset are respectively 0.3 s, 10 mA and 50 μm []
Fig.30  End views of LMA-5 after (a) two and (b) seven discharges. The fusion duration, fusion current, and offset are respectively 0.3 s, 10 mA and 50 μm []
Fig.30  End views of LMA-5 after (a) two and (b) seven discharges. The fusion duration, fusion current, and offset are respectively 0.3 s, 10 mA and 50 μm []
splice typetheoretical coupling loss /dBbutt-coupling loss /dBoptimized splice loss/dB
SMF-28/LMA-100.180.410.19
SMF-28/HC-1550-020.461.501.45
SMF-28/LMA-53.323.620.90
SMF-28/NL-3.3-8807.858.142.53
SMF-28/PM-1550-014.704.882.03
Tab.2  Splice losses from SMF28 to different PCFs []
1 Knight J C, Birks T A, Russell P St J, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters , 1996, 21(19): 1547–1549
doi: 10.1364/OL.21.001547 pmid:19881720
2 Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber. Optics Letters , 1997, 22(13): 961–963
doi: 10.1364/OL.22.000961 pmid:18185719
3 Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S, Roberts P J, Allan D C. Single-mode photonic band gap guidance of light in air. Science , 1999, 285(5433): 1537–1539
doi: 10.1126/science.285.5433.1537 pmid:10477511
4 Broderick N G R, Monro T M, Bennett P J, Richardson D J. Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters , 1999, 24(20): 1395–1397
doi: 10.1364/OL.24.001395 pmid:18079813
5 Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A, Russell P, St J. Highly birefringent photonic crystal fibers. Optics Letters , 2000, 25(18): 1325–1327
doi: 10.1364/OL.25.001325 pmid:18066205
6 Ju J, Jin W, Demokan M S. Properties of a highly birefringent photonic crystal fiber. IEEE Photonics Technology Letters , 2003, 15(10): 1375–1377
doi: 10.1109/LPT.2003.818051
7 Knight J, Birks T, Russell P, de Sandro J. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America. A, Optics, Image Science, and Vision , 1998, 15(3): 748
doi: 10.1364/JOSAA.15.000748
8 Mortensen N A, Folkenberg J R, Nielsen M D, Hansen K P. Modal cutoff and the V parameter in photonic crystal fibers. Optics Letters , 2003, 28(20): 1879–1881
doi: 10.1364/OL.28.001879 pmid:14587762
9 Nielsen M D, Mortensen N A, Folkenberg J R, Bjarklev A. Mode-field radius of photonic crystal fibers expressed by the V parameter. Optics Letters , 2003, 28(23): 2309–2311
doi: 10.1364/OL.28.002309 pmid:14680165
10 Kuhlmey B T, McPhedran R C, Martijn de Sterke C. Modal cutoff in microstructured optical fibers. Optics Letters , 2002, 27(19): 1684–1686
doi: 10.1364/OL.27.001684 pmid:18033335
11 Folkenberg J R, Mortensen N A, Hansen K P, Hansen T P, Simonsen H R, Jakobsen C. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Optics Letters , 2003, 28(20): 1882–1884
doi: 10.1364/OL.28.001882 pmid:14587763
12 Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C. High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express , 2003, 11(7): 818–823
doi: 10.1364/OE.11.000818 pmid:19461794
13 Blake J N, Kim B Y, Shaw H J. Fiber-optic modal coupler using periodic microbending. Optics Letters , 1986, 11(3): 177
doi: 10.1364/OL.11.000177 pmid:19730571
14 Sorin W V, Kim B Y, Shaw H J. Highly selective evanescent modal filter for two-mode optical fibers. Optics Letters , 1986, 11(9): 581–583
doi: 10.1364/OL.11.000581 pmid:19738695
15 Kim B Y, Blake J N, Engan H E, Shaw H J. All-fiber acousto-optic frequency shifter. Optics Letters , 1986, 11(6): 389–391
doi: 10.1364/OL.11.000389 pmid:19730641
16 Poole C D, Wiesenfeld J M, McCormick A R, Nelson K T. Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber. Optics Letters , 1992, 17(14): 985–987
doi: 10.1364/OL.17.000985 pmid:19794695
17 Park H S, Song K Y, Yun S H, Kim B Y. All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers. Journal of Lightwave Technology , 2002, 20(10): 1864–1868
doi: 10.1109/JLT.2002.804035
18 Murphy K A, Miller M S, Vengsarkar A M, Claus R O. Elliptical-core two mode optical-fiber sensor implementation methods. Journal of Lightwave Technology , 1990, 8(11): 1688–1696
doi: 10.1109/50.60567
19 Vengsarkar A M, Michie W C, Jankovic L, Culshaw B, Claus R O. Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature. Journal of Lightwave Technology , 1994, 12(1): 170–177
doi: 10.1109/50.265750
20 Kim B Y, Blake J N, Huang S Y, Shaw H J. Use of highly elliptical core fibers for two-mode fiber devices. Optics Letters , 1987, 12(9): 729–731
doi: 10.1364/OL.12.000729 pmid:19741854
21 Jin W, Wang Z, Ju J. Two-mode photonic crystal fibers. Optics Express , 2005, 13(6): 2082–2088
doi: 10.1364/OPEX.13.002082 pmid:19495093
22 Hong K S, Park H C, Kim B Y, Hwang I K, Jin W, Ju J, Yeom D I. 1000 nm tunable acousto-optic filter based on photonic crystal fiber. Applied Physics Letters , 2008, 92(3): 031110
doi: 10.1063/1.2806198
23 Engan H E, Kim B Y, Blake J N, Shaw H J. Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. Journal of Lightwave Technology , 1988, 6(3): 428–436
doi: 10.1109/50.4020
24 Yun S H, Hwang I K, Kim B Y. All-fiber tunable filter and laser based on two-mode fiber. Optics Letters , 1996, 21(1): 27–29
doi: 10.1364/OL.21.000027 pmid:19865293
25 Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express , 2001, 9(13): 676–680
doi: 10.1364/OE.9.000676 pmid:19424307
26 Hansen T P, Broeng J, Libori S E B, Knudsen E, Bjarklev A, Jensen J R, Simonsen H. Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technology Letters , 2001, 13(6): 588–590
doi: 10.1109/68.924030
27 Folkenberg J, Nielsen M, Mortensen N, Jakobsen C, Simonsen H. Polarization maintaining large mode area photonic crystal fiber. Optics Express , 2004, 12(5): 956–960
doi: 10.1364/OPEX.12.000956 pmid:19474907
28 Kubota H, Kawanishi S, Koyanagi S, Tanaka M, Yamaguchi S. Absolutely single polarization photonic crystal fiber. IEEE Photonics Technology Letters , 2004, 16(1): 182–184
doi: 10.1109/LPT.2003.819415
29 Ju J, Jin W, Demokan M S. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology , 2006, 24(2): 825–830
doi: 10.1109/JLT.2005.861942
30 Marcuse D. Light Transmission Optics. New York: Van Nostrand Reinhold, 1982
31 White T P, McPhedran R C, de Sterke C M, Botten L C, Steel M J. Confinement losses in microstructured optical fibers. Optics Letters , 2001, 26(21): 1660–1662
doi: 10.1364/OL.26.001660 pmid:18049691
32 Ju J, Jin W, Demokan M S. Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photonics Technology Letters , 2004, 16(11): 2472–2474
doi: 10.1109/LPT.2004.835216
33 Ju J, Wang Z, Jin W, Demokan M S. Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor. IEEE Photonics Technology Letters , 2006, 18(20): 2168–2170
doi: 10.1109/LPT.2006.883889
34 Agrawal G P. Nonlinear Fiber Optics. New York: Academic Presss, 2007
35 Finazzi V, Monro T M, Richardson D J. Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. Journal of the Optical Society of America. B, Optical Physics , 2003, 20(7): 1427
doi: 10.1364/JOSAB.20.001427
36 Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore R C, Frampton K, Koizumi F, Richardson D, Monro T M. Bismuth glass holey fibers with high nonlinearity. Optics Express , 2004, 12(21): 5082–5087
doi: 10.1364/OPEX.12.005082 pmid:19484061
37 Kiang K M, Frampton K, Monro T M, Moore R, Tucknott J, Hewak D W, Richardson D J, Rutt H N. Extruded singlemode non-silica glass holey optical fibres. Electronics Letters , 2002, 38(12): 546
doi: 10.1049/el:20020421
38 Kumar V V R, George A K, Reeves W H, Knight J C, Russell P St J, Omenetto F G, Taylor A J. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express , 2002, 10(25): 1520–1525
doi: 10.1364/OE.10.001520 pmid:19461687
39 Kumar V V R, George A K, Knight J C, Russell P St J. Tellurite photonic crystal fiber. Optics Express , 2003, 11(20): 2641–2645
doi: 10.1364/OE.11.002641 pmid:19471377
40 Monro T M, West Y D, Hewak D W, Broderick N G R, Richardson D J. Chalcogenide holey fibres. Electronics Letters , 2000, 36(24): 1998
doi: 10.1049/el:20001394
41 Ferrando A, Silvestre E, Andres P, Miret J J, Andres M V. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express , 2001, 9(13): 687–697
doi: 10.1364/OE.9.000687 pmid:19424309
42 Reeves W H, Knight J C, Russell P St J, Roberts P J. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express , 2002, 10(14): 609–613
doi: 10.1364/OE.10.000609 pmid:19436406
43 Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express , 2003, 11(8): 843–852
doi: 10.1364/OE.11.000843 pmid:19461798
44 Hansen K P. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express , 2003, 11(13): 1503–1509
doi: 10.1364/OE.11.001503 pmid:19466023
45 Renversez G, Kuhlmey B, McPhedran R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Optics Letters , 2003, 28(12): 989–991
doi: 10.1364/OL.28.000989 pmid:12836755
46 Shen L P, Huang W P, Jian S S. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology , 2003, 21(7): 1644–1651
doi: 10.1109/JLT.2003.814397
47 Hoo Y L, Jin W, Ju J, Ho H L, Wang D N. Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion. Optics Communications , 2004, 242(4–6): 327–332
doi: 10.1016/j.optcom.2004.08.030
48 Hoo Y L, Jin W, Ho H L, Wang D N, Windeler R S. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering (Redondo Beach, Calif.) , 2002, 41(1): 8–9
doi: 10.1117/1.1429930
49 Hoo Y L, Jin W, Shi C Z, Ho H L, Wang D N, Ruan S C. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics , 2003, 42(18): 3509–3515
doi: 10.1364/AO.42.003509 pmid:12833952
50 Stolen R H, Lee C, Jain R K. Development of the stimulated Raman spectrum in single-mode silica fibers. Journal of the Optical Society of America. B, Optical Physics , 1984, 1(4): 652
doi: 10.1364/JOSAB.1.000652
51 Baldeck P L, Alfano R R. Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers. Journal of Lightwave Technology , 1987, 5(12): 1712–1715
doi: 10.1109/JLT.1987.1075465
52 Ilev I, Kumagai H, Toyoda K, Koprinkov I. Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping. Applied Optics , 1996, 35(15): 2548–2553
doi: 10.1364/AO.35.002548 pmid:21085393
53 Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters , 2000, 25(1): 25–27
doi: 10.1364/OL.25.000025 pmid:18059770
54 Coen S, Chau A H C, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P, St J. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters , 2001, 26(17): 1356–1358
doi: 10.1364/OL.26.001356 pmid:18049607
55 Coen S, Chau A H L, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P, St J. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America. B, Optical Physics , 2002, 19(4): 753–764
doi: 10.1364/JOSAB.19.000753
56 Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S. Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America. B, Optical Physics , 2002, 19(4): 765–771
doi: 10.1364/JOSAB.19.000765
57 Gaeta A L. Nonlinear propagation and continuum generation in microstructured optical fibers. Optics Letters , 2002, 27(11): 924–926
doi: 10.1364/OL.27.000924 pmid:18026325
58 Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express , 2003, 11(13): 1537–1540
doi: 10.1364/OE.11.001537 pmid:19466027
59 Hundertmark H, Kracht D, Wandt D, Fallnich C, Kumar V V R K, George A K, Knight J C, Russell P St J. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. Optics Express , 2003, 11(24): 3196–3201
doi: 10.1364/OE.11.003196 pmid:19471445
60 Prabhu M, Taniguchi A, Hirose S, Lu J, Musha M, Shirakawa A, Ueda K. Supercontinuum generation using Raman fiber laser. Applied Physics. B, Lasers and Optics , 2003, 77(2–3): 205–210
doi: 10.1007/s00340-003-1211-x
61 Abeeluck A K, Headley C, J?rgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Optics Letters , 2004, 29(18): 2163–2165
doi: 10.1364/OL.29.002163 pmid:15460890
62 Avdokhin A V, Popov S V, Taylor J R. Continuous-wave, high-power, Raman continuum generation in holey fibers. Optics Letters , 2003, 28(15): 1353–1355
doi: 10.1364/OL.28.001353 pmid:12906087
63 Abeeluck A K, Headley C. Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. Optics Letters , 2005, 30(1): 61–63
doi: 10.1364/OL.30.000061 pmid:15648638
64 Agrawal G P. Application of Nonlinear Fiber Optics, New York: Academic Press, 2008
65 Kano H, Hamaguchi H. Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy. Journal of Raman Spectroscopy , 2006, 37(1–3): 411–415
doi: 10.1002/jrs.1436
66 Nagahara T, Imura K, Okamoto H. Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber. Review of Scientific Instruments , 2004, 75(11): 4528
doi: 10.1063/1.1804371
67 Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters , 2001, 26(9): 608–610
doi: 10.1364/OL.26.000608 pmid:18040398
68 Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Physical Review Letters , 2000, 84(22): 5102–5105
doi: 10.1103/PhysRevLett.84.5102 pmid:10990877
69 Holzwarth R, Udem T, Hansch T W, Knight J C, Wadsworth W J, Russell P St J. Optical frequency synthesizer for precision spectroscopy. Physical Review Letters , 2000, 85(11): 2264–2267
doi: 10.1103/PhysRevLett.85.2264 pmid:10977987
70 Takara H, Ohara T, Sato K. Over 1000 km DWDM transmission with supercontinuum multi-carrier source. Electronics Letters , 2003, 39(14): 1078
doi: 10.1049/el:20030701
71 Yusoff Z, Petropoulos P, Furusawa K, Monro T M, Richardson D J. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters , 2003, 15(12): 1689–1691
doi: 10.1109/LPT.2003.819733
72 Monro T M, Richardson D J, Bennett P J. Developing holey fibres for evanescent field devices. Electronics Letters , 1999, 35(14): 1188
doi: 10.1049/el:19990780
73 Stewart G, Norris J, Clark D F, Culshaw B. Evanescent-wave chemical sensors--a theoretical evaluation. International Journal of Optoelectronics , 1991, 6(3): 227–238
74 Stewart G, Jin W, Culshaw B. Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared. Sensors and Actuators. B, Chemical , 1997, 38(1–3): 42–47
doi: 10.1016/S0925-4005(97)80169-4
75 Ho H L, Hoo Y L, Jin W, Ju J, Wang D N, Windeler R S, Li Q. Optimizing microstructured optical fibers for evanescent wave gas sensing. Sensors and Actuators. B, Chemical , 2007, 122(1): 289–294
doi: 10.1016/j.snb.2006.05.036
76 Cussler E L. Diffusion: Mass Transfer in Fluid Systems. New York: Cambridge University, 1997
77 Smith C M, Venkataraman N, Gallagher M T, Müller D, West J A, Borrelli N F, Allan D C, Koch K W. Low-loss hollow-core silica/air photonic bandgap fibre. Nature , 2003, 424(6949): 657–659
doi: 10.1038/nature01849 pmid:12904788
78 Roberts P J, Couny F, Sabert H, Mangan B J, Williams D P, Farr L, Mason M W, Tomlinson A, Birks T A, Knight J C, St J, Russell P. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express , 2005, 13(1): 236–244
doi: 10.1364/OPEX.13.000236 pmid:19488348
79 Amezcua-Correa R, Broderick N G R, Petrovich M N, Poletti F, Richardson D J. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. Optics Express , 2007, 15(26): 17577–17586
doi: 10.1364/OE.15.017577 pmid:19551052
80 Chen X, Li M J, Venkataraman N, Gallagher M T, Wood W A, Crowley A M, Carberry J P, Zenteno L A, Koch K W. Highly birefringent hollow-core photonic bandgap fiber. Optics Express , 2004, 12(16): 3888–3893
doi: 10.1364/OPEX.12.003888 pmid:19483922
81 Benabid F, Couny F, Knight J C, Birks T A, Russell P St J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature , 2005, 434(7032): 488–491
doi: 10.1038/nature03349 pmid:15791251
82 Thapa R, Knabe K, Corwin K L, Washburn B R. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells. Optics Express , 2006, 14(21): 9576–9583
doi: 10.1364/OE.14.009576 pmid:19529347
83 Hensley C J, Broaddus D H, Schaffer C B, Gaeta A L. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Optics Express , 2007, 15(11): 6690–6695
doi: 10.1364/OE.15.006690 pmid:19546979
84 Hoo Y L, Jin W, Ho H L, Ju J, Wang D N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors and Actuators. B, Chemical , 2005, 105(2): 183–186
doi: 10.1016/j.snb.2004.05.059
85 Kornaszewski L W, Gayraud N, Stone J M, Macpherson W N, George A K, Knight J C, Hand D P, Reid D T. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator. Optics Express , 2007, 15(18): 11219–11224
doi: 10.1364/OE.15.011219 pmid:19547477
86 Cubillas A M, Hald J, Petersen J C. High resolution spectroscopy of ammonia in a hollow-core fiber. Optics Express , 2008, 16(6): 3976–3985
doi: 10.1364/OE.16.003976 pmid:18542495
87 Benabid F, Knight J C, Antonopoulos G, Russell P, St J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science , 2002, 298(5592): 399–402
doi: 10.1126/science.1076408 pmid:12376698
88 Henningsen J, Hald J, Peterson J C. Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers. Optics Express , 2005, 13(26): 10475–10482
doi: 10.1364/OPEX.13.010475 pmid:19503263
89 Benabid F, Light P S, Couny F, Russell P, St J. Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF. Optics Express , 2005, 13(15): 5694–5703
doi: 10.1364/OPEX.13.005694 pmid:19498571
90 Fini J M. Microstructure fibres for optical sensing in gases and liquids. Measurement Science & Technology , 2004, 15(6): 1120–1128
doi: 10.1088/0957-0233/15/6/011
91 De Matos C J S, Cordeiro C M B, Dos Santos E M, Ong J S K, Bozolan A, Brito Cruz C H. Liquid-core, liquid-cladding photonic crystal fibers. Optics Express , 2007, 15(18): 11207–11212
doi: 10.1364/OE.15.011207 pmid:19547475
92 Xiao L, Jin W, Demokan M S, Ho H L, Hoo Y L, Zhao C. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Optics Express , 2005, 13(22): 9014–9022
doi: 10.1364/OPEX.13.009014 pmid:19498936
93 Han Y, Oo M K K, Zhu Y N, Xiao L M, Demohan M S, Jin W, Du H. Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering. Optical Engineering (Redondo Beach, Calif.) , 2008, 47(4): 040502
doi: 10.1117/1.2902463
94 Xuan H F, Jin W, Ju J, Ho H L, Zhang M, Liao Y B. Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors. In: Proceedings of the Society for Photo-Instrumentation Engineers , 2007, 6619: 36
doi: 10.1117/12.738642
95 Xiao L M, Jin W, Demokan M S. Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs. Optics Express , 2007, 15(24): 15637–15647
doi: 10.1364/OE.15.015637 pmid:19550851
96 Wang Y P, Tan X L, Jin W, Liu S J, Ying D Q, Hoo Y L. Improved bending property of half-filled photonic crystal fiber. Optics Express , 2010, 18(12): 12197–12202
doi: 10.1364/OE.18.012197 pmid:20588344
97 Wang Y P, Tan X L, Jin W, Ying D Q, Hoo Y L, Liu S J. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications. Optics Letters , 2010, 35(1): 88–90
doi: 10.1364/OL.35.000088 pmid:20664682
98 Terrel M, Digonnet M J F, Fan S. Polarization controller for hollow-core fiber. Optics Letters , 2007, 32(11): 1524–1526
doi: 10.1364/OL.32.001524 pmid:17546176
99 Pang M, Jin W. A hollow-core photonic bandgap fiber polarization controller. Optics Letters , 2011, 36(1): 16–18
doi: 10.1364/OL.36.000016 pmid:21209672
100 Ozcan A, Tewary A, Digonnet M J F, Kino G S. Observation of mode coupling in bitapered air-core photonic bandgap fibers. Optics Communications , 2007, 271(2): 391–395
doi: 10.1016/j.optcom.2006.10.039
101 Wang Y P, Jin W, Ju J, Xuan H F, Ho H L, Xiao L M, Wang D N. Long period gratings in air-core photonic bandgap fibers. Optics Express , 2008, 16(4): 2784–2790
doi: 10.1364/OE.16.002784 pmid:18542362
102 Jin L, Jin W, Ju J, Wang Y P. Investigation of long-period grating resonances in hollow-core photonic bandgap fibers. Journal of Lightwave Technology , 2011, 29(11): 1708–1714
doi: 10.1109/JLT.2011.2138679
103 Xuan H F, Jin W, Ju J, Wang Y P, Zhang M, Liao Y B, Chen M H. Hollow-core photonic bandgap fiber polarizer. Optics Letters , 2008, 33(8): 845–847
doi: 10.1364/OL.33.000845 pmid:18414552
105 Hoo Y L, Liu S J, Ho H L, Jin W. Fast response microstructured optical fiber methane sensor with multiple side-openings. IEEE Photonics Technology Letters , 2010, 22(5): 296–298
doi: 10.1109/LPT.2009.2039016
106 Pang M, Jin W. Detection of acoustic pressure with hollow-core photonic bandgap fiber. Optics Express , 2009, 17(13): 11088–11097
doi: 10.1364/OE.17.011088 pmid:19550508
107 Xiao L, Demokan M S, Jin W, Wang Y, Zhao C L. Fusion splicing photonic crystal fibers and conventional single-mode Fibers: microhole collapse effect. Journal of Lightwave Technology , 2007, 25(11): 3563–3574
doi: 10.1109/JLT.2007.907787
108 Xiao L, Jin W, Demokan M S. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges. Optics Letters , 2007, 32(2): 115–117
doi: 10.1364/OL.32.000115 pmid:17186035
Related articles from Frontiers Journals
[1] Kaiwei LI,Ting ZHANG,Nan ZHANG,Mengying ZHANG,Jing ZHANG,Tingting WU,Shaoyang MA,Junying WU,Ming CHEN,Yi HE,Lei WEI. Integrated liquid crystal photonic bandgap fiber devices[J]. Front. Optoelectron., 2016, 9(3): 466-482.
[2] Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
[3] WANG Zhi, LIU Yange, KAI Guiyun, LIU Bo, ZHANG Chunshu, JIN Long, FANG Qiang, YUAN Shuzhong, DONG Xiaoyi. Guided properties and applications of photonic bandgap fibers[J]. Front. Optoelectron., 2008, 1(1-2): 25-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed