Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2012, Vol. 5 Issue (4) : 429-434     DOI: 10.1007/s12200-012-0293-7
RESEARCH ARTICLE |
Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property
Jiarui HUANG(), Feng TANG, Cuiping GU(), Chengcheng SHI, Muheng ZHAI
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
Download: PDF(331 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanoflake-based flower-like CuO nanostructures have been synthesized through thermal decomposition of [Cu(NH3)4]2+ solution without any surfactants and catalysts at low temperature. The products are characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The possible formation process based on the aggregation-recrystallization mechanism is proposed. Finally, the obtained flower-like CuO hierarchical nanostructures have been used as the photocatalyst in the experiments. It is found that the as-prepared flower-like CuO hierarchical nanostructures exhibit superior photocatalytic property on photocatalytic decomposition of Rhodamine B due to their hierarchical structures.

Keywords cupric oxide (CuO)      microflowers      hierarchical nanostructures      photocatalytic property     
Corresponding Authors: HUANG Jiarui,Email:jrhuang@mail.ahnu.edu.cn; GU Cuiping,Email:cpgu2008@mail.ahnu.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Jiarui HUANG,Feng TANG,Cuiping GU, et al. Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property[J]. Front Optoelec, 2012, 5(4): 429-434.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0293-7
http://journal.hep.com.cn/foe/EN/Y2012/V5/I4/429
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiarui HUANG
Feng TANG
Cuiping GU
Chengcheng SHI
Muheng ZHAI
Fig.1  XRD pattern of as-prepared product
Fig.2  (a) and (b) SEM images of as-precipitates obtained through thermal decomposition of [Cu(NH)] solution
Fig.3  SEM images of as-precipitates obtained through thermal decomposition of [Cu(NH)] solution obtained after hydrothermal reaction at 80°C for (a) 15 min; (b) 0.5 h; (c) 1.5 h
Fig.4  Schematic illustration of formation process and shape evolution of flower-like CuO hierarchical nanostructures
Fig.5  (a) Absorption spectrum and photodecomposition of Rhodamine B solution (10 mg/L, 50 mL) in presence of flower-like CuO hierarchical nanostructures under UV irradiation. Insets are the photodegradation plots of Rhodamine B under UV-light, in which is the concentration of Rhodamine B and is the initial concentration; (b) simplified scheme of Pyronine B photodegradation under irradiation of 365 nm UV light in presence of CuO
1 Huo Y J, Lin H, Chen R, Rong Y W, Kamins T I, Harris J S. MBE growth of tensile-strained Ge quantum wells and quantum dots. Frontiers of Optoelectronics , 2012, 5(1): 112–116
doi: 10.1007/s12200-012-0193-x
2 Xue F, Liu F, Huang Y D. Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton. Frontiers of Optoelectronics , 2012, 5(1): 51–62
doi: 10.1007/s12200-012-0185-x
3 Gowda S R, Reddy A L M, Shaijumon M M, Zhan X B, Ci L J, Ajayan P M. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. Nano Letters , 2011, 11(1): 101–106
doi: 10.1021/nl102919m pmid:21133387
4 Ewers T D, Sra A K, Norris B C, Cable R E, Cheng C H, Shantz D F, Schaak R E. Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices. Chemistry of Materials , 2005, 17(3): 514–520
doi: 10.1021/cm0483792
5 Liu W T. Nanoparticles and their biological and environmental applications. Journal of Bioscience and Bioengineering , 2006, 102(1): 1–7
doi: 10.1263/jbb.102.1 pmid:16952829
6 Jin D L, Miu X, Yu X J, Wang L N, Wang N Y, Wang L C. Synthesis of core-shell microspheres of poly(methyl methacrylate)-CuO by solution deposition method. Materials Chemistry and Physics , 2010, 124(1): 69–72
doi: 10.1016/j.matchemphys.2010.08.024
7 Yu L G, Zhang G M, Wu Y, Bai X, Guo D Z. Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. Journal of Crystal Growth , 2008, 310(12): 3125–3130
doi: 10.1016/j.jcrysgro.2008.03.026
8 Wang S L, Xu H, Qian L Q, Jia X, Wang J W, Liu Y Y, Tang W H. CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres. Journal of Solid State Chemistry , 2009, 182(5): 1088–1093
doi: 10.1016/j.jssc.2009.01.042
9 Switzer J A, Kothari H M, Poizot P, Nakanishi S, Bohannan E W. Enantiospecific electrodeposition of a chiral catalyst. Nature , 2003, 425(6957): 490–493
doi: 10.1038/nature01990 pmid:14523441
10 Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali P K. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Applied Physics Letters , 2004, 84(7): 1180–1182
doi: 10.1063/1.1646760
11 Gao X P, Bao J L, Pan G L, Zhu H Y, Huang P X, Wu F, Song D Y. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. Journal of Physical Chemistry B , 2004, 108(18): 5547–5551
doi: 10.1021/jp037075k
12 Hsieh C T, Chen J M, Lin H H, Shih H C. Field emission from various CuO nanostructures. Applied Physics Letters , 2003, 83(16): 3383–3385
doi: 10.1063/1.1619229
13 Chen J, Deng S Z, Xu N S, Zhang W X, Wen X G, Yang S H. Temperature dependence of field emission from cupric oxide nanobelt films. Applied Physics Letters , 2003, 83(4): 746–748
doi: 10.1063/1.1595156
14 Wen X G, Xie Y T, Choi C L, Wan K C, Li X Y, Yang S H. Copper-based nanowire materials: templated syntheses, characterizations, and applications. Langmuir , 2005, 21(10): 4729–4737
doi: 10.1021/la050038v pmid:16032897
15 Liu Y, Chu Y, Li M Y, Li L L, Dong L H. In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process. Journal of Materials Chemistry , 2006, 16(2): 192–198
doi: 10.1039/b512481f
16 Basu M, Sinha A K, Pradhan M, Sarkar S, Pal A, Pal T. Monoclinic CuO nanoflowers on resin support: recyclable catalyst to obtain perylene compound. Chemical Communications (Cambridge) , 2010, 46(46): 8785–8787
doi: 10.1039/c0cc03137b pmid:20957269
17 Gu A X, Wang G F, Zhang X J, Fang B. Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bulletin of Materials Science , 2010, 33(1): 17–20
doi: 10.1007/s12034-010-0002-3
18 Yang Z H, Xu J, Zhang W X, Liu A P, Tang S P. Controlled synthesis of CuO nanostructures by a simple solution route. Journal of Solid State Chemistry , 2007, 180(4): 1390–1396
doi: 10.1016/j.jssc.2007.02.008
19 Yang S Y, Wang C F, Chen L, Chen S. Facile dicyandiamide-mediated fabrication of well-defined CuO hollow microspheres and their catalytic application. Materials Chemistry and Physics , 2010, 120(2-3): 296–301
doi: 10.1016/j.matchemphys.2009.11.005
20 Yang L X, Zhu Y J, Tong H, Li L, Zhang L. Multistep synthesis of CuO nanorod bundles and interconnected nanosheets using Cu2(OH)3Cl plates as precursor. Materials Chemistry and Physics , 2008, 112(2): 442–447
doi: 10.1016/j.matchemphys.2008.05.071
21 Hong J M, Li J, Ni Y H. Urchin-like CuO microspheres: Synthesis, characterization, and properties. Journal of Alloys and Compounds , 2009, 481(1-2): 610–615
doi: 10.1016/j.jallcom.2009.03.043
22 Wang X, Hu C G, Liu H, Du G J, He X S, Xi Y. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors and Actuators B, Chemical , 2010, 144(1): 220–225
doi: 10.1016/j.snb.2009.09.067
23 Lou X W, Li C M, Archer L A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials (Deerfield Beach, Fla.) , 2009, 21(24): 2536–2539
doi: 10.1002/adma.200803439
24 Yin X M, Li C C, Zhang M, Hao Q Y, Liu S, Chen L B, Wang T H. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. Journal of Physical Chemistry C , 2010, 114(17): 8084–8088
doi: 10.1021/jp100224x
25 Bayati M R, Golestani-Fard F, Moshfegh A Z. Visible photodecomposition of methylene blue over micro arc oxidized WO3-loaded TiO2 nano-porous layers. Applied Catalysis A: General , 2010, 382(2): 322–331
doi: 10.1016/j.apcata.2010.05.017
26 Bayati M R, Moshfegh A Z, Golestani-Fard F. On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation. Applied Catalysis A: General , 2010, 389(1-2): 60–67
doi: 10.1016/j.apcata.2010.09.003
27 Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J M. Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental , 2001, 31(2): 145–157
doi: 10.1016/S0926-3373(00)00276-9
28 Hoffmann M R, Martin S T, Choi W, Bahnemannt D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews , 1995, 95(1): 69–96
doi: 10.1021/cr00033a004
29 Jiang H Q, Endo H, Natori H, Nagai M, Kobayshi K. Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation. Materials Research Bulletin , 2009, 44(3): 700–706
doi: 10.1016/j.materresbull.2008.06.007
30 Li H X, Bian Z F, Zhu J, Zhang D Q, Li G, Huo Y, Li H, Lu Y. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. Journal of the American Chemical Society , 2007, 129(27): 8406–8407
doi: 10.1021/ja072191c pmid:17571890
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed