Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2012, Vol. 5 Issue (3) : 284-291     DOI: 10.1007/s12200-012-0275-9
RESEARCH ARTICLE |
Temperature effects on output characteristics of quantum dot white light emitting diode
Amin RANJBARAN()
Faculty of Engineering, Islamic Azad University, Hamedan Branch, Hamedan 65138, Iran
Download: PDF(446 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we proposed quantum dot (QD) based structure for implementation of white light emitting diode (WLED) based on InGaN/GaN. The proposed structure included three layers of InGaN QD with box shapes and GaN barriers. By using of single band effective mass method and considering strain effect, piezoelectric and spontaneous polarizations internal fields, then solving Schr?dinger and Poisson equations self consistently, we obtained electron and hole eigen energies and wave functions. By evaluating dipole moment matrix elements for interband transitions, the output intensity was calculated due to the interband transition between two energy levels with highest emission probability. We adjusted QDs dimensions and material compositions so that the output light can be close to the ideal white light in chromaticity diagrams. Finally, effects of temperature variations on output spectrum and chromaticity coordinates were studied. We demonstrated that temperature variations in the range of 100 to 400 K decrease output intensity, broaden output spectral profile and cause a red shift in three main colors spectrums. This temperature variation deviates (x, y) are coordinated in the chromaticity diagram, but the output color still remains close to white.

Keywords quantum dot (QD)      InGaN      optical intensity spectrum      white light emitting diode (WLED)      chromaticity coordinate     
Corresponding Authors: RANJBARAN Amin,Email:ranjbaran.amin9@gmail.com   
Issue Date: 05 September 2012
 Cite this article:   
Amin RANJBARAN. Temperature effects on output characteristics of quantum dot white light emitting diode[J]. Front Optoelec, 2012, 5(3): 284-291.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0275-9
http://journal.hep.com.cn/foe/EN/Y2012/V5/I3/284
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Amin RANJBARAN
Fig.1  (a) Schematic of the MQD-WLED containing three emitters grown vertically, spacing between adjacent single QDs in the laterally and vertically direction is adjusted to minimize overlaps of corresponding wave functions; (b) proposed cubic shaped InGaN QD within a large GaN QD. , and are quantum box dimensions
Fig.2  Wave functions corresponding to the first conduction band, (a) without internal field and strain effects, (b) with internal field and strain effects, and heavy hole band, (c) without internal field and strain effects, (d) with internal field and strain effects, for the blue color emitter. Deviation from dot center is obvious. Deviation of electron and hole wave functions from QD center, which decrease overlap between the electron and hole wave functions
colorLx = Ly /nmLz/nmbarrier/dotEc1Ehh1Eg,eff
red103.1GaN/In0.33Ga0.67N1.5518 eV-0.46952.0213
green103.2GaN/In0.26Ga0.74N1.8795 eV-0.43762.3171
blue103.5GaN/In0.17Ga0.83N2.2918 eV-0.39652.6883
Tab.1  QD dimensions and material compositions for red, green and blue emission colors
parametersInNGaNAlN
mez/m00.070.20.3
Dcr/eV0.0400.010-0.169
Dso/eV0.0050.0170.019
Eg/eV0.763.446.28
lattice constant a/?3.543.193.11
Tab.2  Wurtzite GaN-family QD parameters, which are used in our calculations
Fig.3  Output intensity for three light emitting layers of blue, green and red QDs at temperature = 300 K
Fig.4  QD-WLED output white light coordinate in standard chromaticity diagram
Fig.5  Temperature increasing effects from 100 to 400 K for emitter of (a) red, (b) green, (c) blue
Fig.6  Normalized output power spectral density for different values of temperature
Fig.7  Effects of temperature variation on normalized optical output power
Fig.8  Effects of temperature variation from 100 to 400 K on chromaticity coordinates for proposed structure
1 Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters , 1994, 64(13): 1687-1689
doi: 10.1063/1.111832
2 Nakamura S. Zn-doped InGaN growth and InGaN/A1GaN double-heterostructure blue-light-emitting diodes. Journal of Crystal Growth , 1994, 145(1-4): 911-917
doi: 10.1016/0022-0248(94)91163-0
3 Vurgaftmana I,Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics , 2001, 89(11): 5815-5875
doi: 10.1063/1.1368156
4 Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E,Lu H, Schaff W J. Small band gap bowing in In1-xGaxN alloys. Applied Physics Letters , 2002, 80(25): 4741-4743
doi: 10.1063/1.1489481
5 Piprek J. Nitride Semiconductor Devices: Principles and Simulation. NewYork: WILEY-VCH, 2007
6 Allen S C, Steck A J. A nearly ideal phosphor-converted white light-emitting diode. Applied Physics Letters , 2008, 92(14): 143309-143311
doi: 10.1063/1.2901378
7 Xie R J, Hirosaki N, Kimura N, Sakuma K, Mitomo M. 2-phosphorconverted white light-emitting diodes using oxynitride/nitride phosphors. Applied Physics Letters , 2007, 90(19): 191101-191103
doi: 10.1063/1.2737375
8 Khoshnegar M, Sodagar M, Eftekharian A, Khorasani S. Design of a GaN white light-emitting diode through envelope function analysis. IEEE Journal of Quantum Electronics , 2010, 46(2): 228-237
doi: 10.1109/JQE.2009.2032556
9 Anikeeva P O, Halpert J E, Bawendi M G, Bulovi? V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters , 2007, 7(8): 2196-2200
doi: 10.1021/nl0703424 pmid:17616230
10 Schubert E F, Kim J K. Solid-state light sources getting smart. Science , 2005, 308(5726): 1274-1278
doi: 10.1126/science.1108712 pmid:15919985
11 Chen C H, Su Y K, Sheu J K, Chen J F, Kuo C H, Lin Y C. Nitride-based cascade near white light-emitting diodes. IEEE Photonics Technology Letters , 2002, 14(7): 908-910
doi: 10.1109/LPT.2002.1012381
12 Ozden I, Makarona E, Nurmikko A V, Takeuchi T, Krames M. A dual-wavelength indium gallium nitride quantum well light emitting diode. Applied Physics Letters , 2001, 79(16): 2532-2534
doi: 10.1063/1.1410345
13 Park K, Kwon M K, Cho C Y, Lim J H, Park S J. Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells. Applied Physics Letters , 2008, 92(9): 091110-091112
doi: 10.1063/1.2890492
14 Shei S C, Sheu J K, Tsai C M, Lai W C, Lee M L, KuoC H. Emission mechanism of mixed-color InGaN/GaN multi-quantum-well light-emitting diodes. Japanese Journal of Applied Physics , 2006, 45(4): 2463-2466
15 Rostami A, Rasooli Saghai H, Baghban Asghari Nejad H. A proposal for enhancement of optical nonlinearity in GaN/AlGaN centered defect quantum box (CDQB) nanocrystal. Solid-State Electronics , 2008, 52(7): 1075-1108
doi: 10.1016/j.sse.2008.03.014
16 Lai C Y, Hsu T M. Polarization field effect on group III-nitride semiconductors. Dissertation for the Doctoral Degree. Taiwan, Republic of China , 2003
17 Winkelnkemper M, Schliwa A, Bimberg D. Interrelation of structural and electronic properties in InxGa1-xN/GaN quantum dots using an eight-band k·p model. Physical Review B: Condensed Matter and Materials Physics , 2006, 74(15): 155322-155333
doi: 10.1103/PhysRevB.74.155322
18 Wu Y R, Lin Y Y, Huang H H, Singh J. Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. Applied Physics (Berlin) , 2009, 105: 13117-13123
19 Ranjan V, Allan G, Priester C, Delerue C. Self-consistent calculations of the optical properties of GaN quantum dots. Physical Review B: Condensed Matter and Materials Physics , 2003, 68(11): 115305-115311
doi: 10.1103/PhysRevB.68.115305
20 Sakamoto A, Sugawara M. Theoretical calculation of lasing spectra of quantum-dot lasers: effect of homogeneous broadening of optical gain. IEEE Photonics Technology Letters , 2000, 12(2): 107-109
doi: 10.1109/68.823485
21 Sugawara M. Self-Assembled InGaAs/GaAs Quantum Dots. London: Academic press, 1999
22 Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics , 1986, QE-22(9): 1915-1921
doi: 10.1109/JQE.1986.1073149
23 Fairman H S, Brill M H, Hemmendinger H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research and Application , 1998, 22(1): 11-23
doi: 10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
24 Han D S, Asryan L V. Output power of a double tunneling-injection quantum dot laser. Nanotechnology , 2010, 21(1): 15201-15214
doi: 10.1088/0957-4484/21/1/015201
25 Schubert E F,Gessmann T, Kim J K. Light-Emitting Diodes. Cambridge: Cambridge University Press, 2003
Related articles from Frontiers Journals
[1] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[2] Lai WANG,Wenbin LV,Zhibiao HAO,Yi LUO. Recent progresses on InGaN quantum dot light-emitting diodes[J]. Front. Optoelectron., 2014, 7(3): 293-299.
[3] Wu TIAN, Xiong HUI, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, Changqing CHEN. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers[J]. Front Optoelec, 2013, 6(4): 429-434.
[4] Guangcun SHAN, Xinghai ZHAO, Mingjun HU, Chan-Hung SHEK, Wei HUANG. Vertical-external-cavity surface-emitting lasers and quantum dot lasers[J]. Front Optoelec, 2012, 5(2): 157-170.
[5] Weiming WANG, Jun YANG, Xin ZHU, Jamie PHILLIPS. Intermediate-band solar cells based on dilute alloys and quantum dots[J]. Front Optoelec Chin, 2011, 4(1): 2-11.
[6] Guoliang LIU, Jianghong YAO, Jingjun XU, Zhanguo WANG. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
[7] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed