Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2012, Vol. 5 Issue (2) : 171-181     DOI: 10.1007/s12200-012-0257-y
Development and prospect of near-field optical measurements and characterizations
Jia WANG(), Qingyan WANG, Mingqian ZHANG
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Download: PDF(772 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Scanning near-field optical microscopy (SNOM) is an ideal experimental measuring system in nano-optical measurements and characterizations. Besides microscopy with resolution beyond the diffraction limit, spectroscope with nanometer resolution and other instruments with novel performances have been indispensable for researches in nano-optics and nanophotonics. This paper reviews the developing history of near-field optical (NFO) measuring method and foresees its prospects in future. The development of NFO measurements has gone through four stages, including optical imaging with super resolution, near-field spectroscopy, measurements of nano-optical parameters, and detections of near-field interactions. For every stage, research objectives, technological properties and application fields are discussed.

Keywords scanning near-field optical microscopy (SNOM)      near-field optical (NFO) measurement      super-resolution imaging      near-field spectroscopy      nano-optics      nanophotonics     
Corresponding Authors: WANG Jia,   
Issue Date: 05 June 2012
 Cite this article:   
Jia WANG,Qingyan WANG,Mingqian ZHANG. Development and prospect of near-field optical measurements and characterizations[J]. Front Optoelec, 2012, 5(2): 171-181.
E-mail this article
E-mail Alert
Articles by authors
Qingyan WANG
Mingqian ZHANG
Fig.1  (a) Typical SNOM system; (b) directional beaming device []; (c) and (d) are simulation and experimental results of the emitting light from the device, respectively []
Fig.2  TERS result of a bundle of SWCNTs [].
(a) Topography of the bundle of SWCNTs []; (b) comparison of far-field and TERS signals from the spot marked by a green cross in (a) []
Fig.3  Measurements of phase and amplitude.
(a) Characterizations of an optical waveguide []. The topography, amplitude maps, phase maps and real field composed by amplitude and phase are obtained; (b) Characterizations of nano-rod, nano-particle, nano-triangle [] and bowtie []
Fig.4  TE-mode optical field emerging from a grating [].
(a) Experimental system []; (b) topography of the grating by SEM []; (c) and (d) are normalized amplitude mapping and the contour plot of the phase []
Fig.5  Vector-field mapping of SPP standing wave [].
(a) Experimental setup []; (b) and (c) are theoretical and experimental results of vector plots centered around a total electric-field intensity minimum, respectively []
Fig.6  Measurement of magnetic field with a split-ring probe [].
(a) Schematic of phase-sensitive near-field microscope and inserts are scanning electron micrographs of two aluminum-coated near-field probes. The top one is a highly cylindrical standard probe, and the bottom one is a split probe, in which an air gap in the metal coating (arrow) has been created []; (b) normalized distributions of electric-and magnetic-field obtained experimentally []
Fig.7  Characterizations of an elliptical cluster of gold particles imaged with a stationary gold tip [].
(a) Two-photon excited PL image [];(b) topography [] of the cluster
Fig.8  Characterizations of a double-fishnet negative index metamaterial structure []. (a) Top-view electron micrograph of the structure, and the inset shows a 3D sketch of a metamaterial unit cell []; (b) scheme of experimental setup and metamaterial sample and the inset shows an electron micrograph of a coated probe used in this investigation []; (c) and (d) are measured near-field images of amplitude and phase. Superimposed white rectangles indicate metamaterial’s structure []
1 Novotny L. The History of Near-field Optics. In: WolfE, ed. Progress in Optics . Amsterdam: Elsevier, 2007, 137–184
2 Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolutio λ/20. Applied Physics Letters , 1984, 44(7): 651–653
doi: 10.1063/1.94865
3 Hao F, Wang R, Wang J. A design methodology for directional beaming control by metal slit-grooves structure. Journal of Optics , 2011, 13(1): 015002
doi: 10.1088/2040-8978/13/1/015002
4 Hess H F, Betzig E, Harris T D, Pfeiffer L N, West K W. Near-field spectroscopy of the quantum constituents of a luminescent system. Science , 1994, 264(5166): 1740–1745
doi: 10.1126/science.264.5166.1740 pmid:17839907
5 Novotny L, Stranick S J. Near-field optical microscopy and spectroscopy with pointed probes. Annual Review of Physical Chemistry , 2006, 57(1): 303–331
doi: 10.1146/annurev.physchem.56.092503.141236 pmid:16599813
6 St?ckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters , 2000, 318(1-3): 131–136
doi: 10.1016/S0009-2614(99)01451-7
7 Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Optics Communications , 2000, 183(1-4): 333–336
doi: 10.1016/S0030-4018(00)00894-4
8 Hartschuh A, Sánchez E J, Xie X S, Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Physical Review Letters , 2003, 90(9): 095503
doi: 10.1103/PhysRevLett.90.095503 pmid:12689234
9 Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters , 2004, 92(9): 096101
doi: 10.1103/PhysRevLett.92.096101 pmid:15089490
10 Wang X, Liu Z, Zhuang M D, Zhang H M, Wang X, Xie Z X, Wu D Y, Ren B, Tian Z Q. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Applied Physics Letters , 2007, 91(10): 101105
doi: 10.1063/1.2776860
11 Wang J J, Saito Y, Batchelder D N, Kirkham J, Robinson C, Smith D A. Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy. Applied Physics Letters , 2005, 86(26): 263111
doi: 10.1063/1.1978983
12 H?ppener C, Novotny L. Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Letters , 2008, 8(2): 642–646
doi: 10.1021/nl073057t pmid:18229969
13 Stanciu C, Sackrow M, Meixner A J. High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope. Journal of Microscopy , 2008, 229(2): 247–253
doi: 10.1111/j.1365-2818.2008.01894.x pmid:18304080
14 Steidtner J, Pettinger B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Physical Review Letters , 2008, 100(23): 236101
doi: 10.1103/PhysRevLett.100.236101 pmid:18643518
15 Hartschuh A, Qian H, Meixner A J, Anderson N, Novotny L. Nanoscale optical imaging of excitons in single-walled carbon nanotubes. Nano Letters , 2005, 5(11): 2310–2313
doi: 10.1021/nl051775e pmid:16277474
16 Anderson N, Anger P, Hartschuh A, Novotny L. Subsurface Raman imaging with nanoscale resolution. Nano Letters , 2006, 6(4): 744–749
doi: 10.1021/nl0600023 pmid:16608276
17 Yano T A, Inouye Y, Kawata S. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Letters , 2006, 6(6): 1269–1273
doi: 10.1021/nl060108y pmid:16771592
18 Anderson N, Hartschuh A, Novotny L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Letters , 2007, 7(3): 577–582
doi: 10.1021/nl0622496 pmid:17324000
19 Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angewandte Chemie International Edition , 2008, 47(9): 1658–1661
doi: 10.1002/anie.200704054 pmid:18188855
20 Budich C, Neugebauer U, Popp J, Deckert V. Cell wall investigations utilizing tip-enhanced Raman scattering. Journal of Microscopy , 2008, 229(3): 533–539
doi: 10.1111/j.1365-2818.2008.01939.x pmid:18331506
21 Wu X B, Wang J, Wang R, Xu J Y, Tian Q, Yu J Y. Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy. Guang Pu Xue yu Guang Pu Fen Xi , 2009, 29(10): 2681–2685 (in Chinese)
22 Diziain S, Adam P M, Bijeon J L, Lamy de la Chapelle M, Royer P. Development of an apertureless near-field optical microscope for fluorescence imaging and spectroscopy. Synthetic Metals , 2003, 139(3): 557–560
doi: 10.1016/S0379-6779(03)00273-X
23 Vobornik D, Banks D S, Lu Z, Fradin C, Taylor R, Johnston L J. Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes. Applied Physics Letters , 2008, 93(16): 163904
doi: 10.1063/1.2998602
24 Nabetani Y, Yamasaki M, Miura A, Tamai N. Fluorescence dynamics and morphology of electroluminescent polymer in small domains by time-resolved SNOM. Thin Solid Films , 2001, 393(1-2): 329–333
doi: 10.1016/S0040-6090(01)01108-7
25 Yatsui T, Kawazoe T, Shimizu T, Yamamoto Y, Ueda M, Kourogi M, Ohtsu M, Lee G H. Observation of size-dependent features in the photoluminescence of zinc oxide nanocrystallites by near-field ultraviolet spectroscopy. Applied Physics Letters , 2002, 80(8): 1444–1446
doi: 10.1063/1.1453487
26 Stiegler J M, Abate Y, Cvitkovic A, Romanyuk Y E, Huber A J, Leone S R, Hillenbrand R. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy. ACS Nano , 2011, 5(8): 6494–6499
doi: 10.1021/nn2017638 pmid:21770439
27 Yeo B S, Madler S, Schmid T, Zhang W, Zenobi R. Tip-enhanced Raman spectroscopy can see more: the case of cytochrome C. Journal of Physical Chemistry C , 2008, 112(13): 4867–4873
doi: 10.1021/jp709799m
28 Zhang D, Heinemeyer U, Stanciu C, Sackrow M, Braun K, Hennemann L E, Wang X, Scholz R, Schreiber F, Meixner A J. Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling. Physical Review Letters , 2010, 104(5): 056601
doi: 10.1103/PhysRevLett.104.056601 pmid:20366779
29 Fang Z, Peng Q, Song W, Hao F, Wang J, Nordlander P, Zhu X. Plasmonic focusing in symmetry broken nanocorrals. Nano Letters , 2011, 11(2): 893–897
doi: 10.1021/nl104333n pmid:21186820
30 Hao F, Wang R, Wang J. A design method for a micron-focusing plasmonic lens based on phase modulation. Plasmonics , 2010, 5(4): 405–409
doi: 10.1007/s11468-010-9157-4
31 Hao F, Wang R, Wang J. A novel design method of focusing-control device by modulating SPPs scattering. Plasmonics , 2010, 5(1): 45–49
doi: 10.1007/s11468-009-9113-3
32 Hao F, Wang R, Wang J. Design and characterization of a micron-focusing plasmonic device. Optics Express , 2010, 18(15): 15741–15746
doi: 10.1364/OE.18.015741 pmid:20720957
33 Hao F, Wang R, Wang J. Focusing control based on SPPs-scattering modulation. Journal of Nonlinear Optical Physics & Materials , 2010, 19(4): 535–541
doi: 10.1142/S021886351000542X
34 Nesci A.Measuring Amplitude and Phase in Optical Fields with Sub-Wavelength Features. Neuchatel: University of Neuchatel, 2001
35 Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics , 2009, 3(5): 287–291
doi: 10.1038/nphoton.2009.46
36 Schnell M, Garcia-Etxarri A, Huber A J, Crozier K B, Borisov A, Aizpurua J, Hillenbrand R. Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy. Journal of Physical Chemistry C , 2010, 114(16): 7341–7345
doi: 10.1021/jp909252z
37 Blaize S, Bérenguier B, Stéfanon I, Bruyant A, Lérondel G, Royer P, Hugon O, Jacquin O, Lacot E. Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry. Optics Express , 2008, 16(16): 11718–11726
doi: 10.1364/OE.16.011718 pmid:18679441
38 Schnell M, Garcia-Etxarri A, Alkorta J, Aizpurua J, Hillenbrand R. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Letters , 2010, 10(9): 3524–3528
doi: 10.1021/nl101693a pmid:20701270
39 Gersen H, Novotny L, Kuipers L, van Hulst N F. On the concept of imaging nanoscale vector fields. Nature Photonics , 2007, 1(5): 242
doi: 10.1038/nphoton.2007.68a
40 Lee K G, Kihm H W, Kihm J E, Choi W J, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S. Vector field microscopic imaging of light. Nature Photonics , 2007, 1(1): 53–56
doi: 10.1038/nphoton.2006.37
41 Lee K G, Kihm H W, Ahn K J, Ahn J S, Suh Y D, Lienau C, Kim D S. Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape. Optics Express , 2007, 15(23): 14993–15001
doi: 10.1364/OE.15.014993 pmid:19550780
42 Burresi M, van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L. Probing the magnetic field of light at optical frequencies. Science , 2009, 326(5952): 550–553
doi: 10.1126/science.1177096 pmid:19797622
43 Fischer U C, Pohl D W. Observation of single-particle plasmons by near-field optical microscopy. Physical Review Letters , 1989, 62(4): 458–461
doi: 10.1103/PhysRevLett.62.458 pmid:10040238
44 Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers. Physical Review Letters , 1997, 79(4): 645–648
doi: 10.1103/PhysRevLett.79.645
45 Robert D G, Robert J S, Daniel E P. Optical antenna: towards a unity efficiency near-field optical probe. Applied Physics Letters , 1997, 70(11): 1354–1356
doi: 10.1063/1.118577
46 Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics , 2009, 3(11): 654–657
doi: 10.1038/nphoton.2009.187
47 Taminiau T H, Moerland R J, Segerink F B, Kuipers L, van Hulst N F. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Letters , 2007, 7(1): 28–33
doi: 10.1021/nl061726h pmid:17212435
48 Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Physical Review Letters , 2006, 96(11): 113002
doi: 10.1103/PhysRevLett.96.113002 pmid:16605818
49 Novotny L. From near-field optics to optical antennas. Physics Today , 2011, 64(7): 47–52
doi: 10.1063/PT.3.1167
50 Mühlschlegel P, Eisler H J, Martin O J, Hecht B, Pohl D W. Resonant optical antennas. Science , 2005, 308(5728): 1607–1609
doi: 10.1126/science.1111886 pmid:15947182
51 Biagioni P, Huang J S, Duò L, Finazzi M, Hecht B. Cross resonant optical antenna. Physical Review Letters , 2009, 102(25): 256801
doi: 10.1103/PhysRevLett.102.256801 pmid:19659107
52 Olmon R L, Krenz P M, Jones A C, Boreman G D, Raschke M B. Near-field imaging of optical antenna modes in the mid-infrared. Optics Express , 2008, 16(25): 20295–20305
doi: 10.1364/OE.16.020295 pmid:19065168
53 Bouhelier A, Beversluis M R, Novotny L. Characterization of nanoplasmonic structures by locally excited photoluminescence. Applied Physics Letters , 2003, 83(24): 5041–5043
doi: 10.1063/1.1634383
54 Burresi M, Diessel D, van Oosten D, Linden S, Wegener M, Kuipers L. Negative-index metamaterials: looking into the unit cell. Nano Letters , 2010, 10(7): 2480–2483
doi: 10.1021/nl100943e pmid:20518537
55 Zentgraf T, Dorfmüller J, Rockstuhl C, Etrich C, Vogelgesang R, Kern K, Pertsch T, Lederer F, Giessen H. Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials. Optics Letters , 2008, 33(8): 848–850
doi: 10.1364/OL.33.000848 pmid:18414553
Related articles from Frontiers Journals
[1] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[2] Wen-Liang GONG, Zhe HU?§?, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew. P. ALDRED, Zhen-Li HUANG, Ming-Qiang ZHU. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Front Optoelec, 2013, 6(4): 458-467.
[3] Ping ZHAO, Zhao WU, Kaisheng CHEN, Xinliang ZHANG. Hybrid fabricating of silica micro/nanofibers[J]. Front Optoelec Chin, 2011, 4(3): 338-342.
Full text