Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2012, Vol. 5 Issue (2) : 224-230     DOI: 10.1007/s12200-012-0198-5
Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells
Cunxi CHENG, Jihuai WU(), Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021, China
Download: PDF(552 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Titanium dioxide-double-walled carbon nanotubes (TiO2-DWCNTs) with DWCNTs/TiO2 of 20 wt.% is prepared by a conventional sol-gel method. Doping the TiO2-DWCNTs in TiO2 photoanode, a flexible dye-sensitized solar cell (DSSC) is fabricated. The sample is characterized by scanning electron microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) absorption, ultraviolet-visible spectroscopy (UV-vis) absorption spectra,electrochemical impedance spectroscopy (EIS) technique and photovoltaic measurement. It is found that adding a certain amount of TiO2-DWCNTs can efficiently decrease the resistance of charge transport, improve dye adsorption. Under an optimal condition, a flexible DSSC contained with 0.50 wt.% TiO2-DWCNTs achieves a light-to-electric energy conversion efficiency of 3.89% under a simulate solar light irradiation of 100 mW·cm-2.

Keywords flexible dye-sensitized solar cell (DSSC)      titanium dioxide (TiO2)      double-walled carbon nanotube (DWCNT)      sol-gel method     
Corresponding Authors: WU Jihuai,   
Issue Date: 05 June 2012
 Cite this article:   
Yaoming XIAO,Yuan CHEN,Haijun YU, et al. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
E-mail this article
E-mail Alert
Articles by authors
Yaoming XIAO
Haijun YU
Ziying TANG
Jianming LIN
Miaoliang HUANG
Jihuai WU
Fig.1  Schematic view of (a) synthetic process of TiO-DWCNTs nanocomposites; (b) flexible DSSC
Fig.2  SEM images of (a) TiO nanoparticles; (b) oxidized DWCNTs; (c) and (d) DWCNTs covered with TiOnanoparticles ; (e) and (f) TiO film covered with 0.50 wt.% TiO-DWCNTs
Fig.3  XRD patterns of TiO (a) and TiO-DWCNT (b) nanopowder
Fig.4  FTIR spectra of (a) pristine DWCNTs; (b) TiO nanoparticles; (c) TiO-DWCNTs nanocomposites and (d) oxidized DWCNTs
Fig.5  Absorption spectra of dye desorbed fromTiO ?lms contained different amount of TiO-DWCNTs
TiO2-DWCNTs: TiO2/(wt.%)VOC/VJSC/(mA·cm-2)FFη/%
Tab.1  Photovoltaic performance of flexible DSSCs with different TiO-DWCNTs contents
Fig.6  Dark current curves for the flexible DSSCs
Fig.7  Electrochemical impedance spectra of the DSSCs with different TiO-DWCNTs contents
Fig.8  Current-voltage curves for the flexible DSSCs
1 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(24): 737–739
doi: 10.1038/353737a0
2 Gr?tzel M. Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research , 2009, 42(11): 1788–1798
doi: 10.1021/ar900141y pmid:19715294
3 Lindstrom H, Holmberg A, Magnusson E, Malmqvist L, Hagfeldt A. A new method to make dye-sensitized nanocrystalline solar cells at room temperature. Journal of Photochemistry and Photobiology A: chemistry , 2001, 145(1–2): 107–112
4 Longo C, Freitas J, DePaoli M A. Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry , 2003, 159(1): 33–39
doi: 10.1016/S1010-6030(03)00106-0
5 Lindstrom H, Holmberg A, Magnusson E, Lindquist S E, Malmqvist L, Hagfeldt A. A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Letters , 2001, 1(2): 97– 100
doi: 10.1021/nl0055254
6 Lee T Y, Alegaonkar P S, Yoo J B. Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films , 2007, 515(12): 5131–5135
doi: 10.1016/j.tsf.2006.10.056
7 Muduli S, Lee W, Dhas V, Mujawar S, Dubey M, Vijayamohanan K, Han S H, Ogale S. Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2/MWCNT nanocomposites. ACS Applied Materical and interfaces , 2009, 1(9): 2030–2035
8 Ha B, Shin D H, Park J, Lee C J. Electronic structure and field emission properties of double-walled carbon nanotubes synthesized by hydrogen arc discharge. Journal of Physical Chemistry C , 2008, 112(2): 430–435
doi: 10.1021/jp0768468
9 Endo M, Muramatsu H, Hayashi T, Kim Y A, Terrones M, Dresselhaus M S. Nanotechnology: ‘Buckypaper’ from coaxial nanotubes. Nature , 2005, 433(7025): 476–478
doi: 10.1038/433476a pmid:15690030
10 Cheng C X, Wu J H, Xiao Y M, Chen Y, Fan L Q, Huang M L, Lin J M, Wang J L, Tang Z Y, Yue G T. Polyvinyl pyrrolidone aided preparation of TiO2 films used in flexible dye-sensitized solar cells. Electrochimica Acta , 2011, 56(21): 7256–7260
doi: 10.1016/j.electacta.2011.06.057
11 Gao B, Chen G Z, Li G. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Applied Catalysis B: Environmental , 2009, 89(3–4): 503–509
doi: 10.1016/j.apcatb.2009.01.009
12 Gr?tzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics: Research and Applications , 2000, 8(1): 171–185
doi: 10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
13 Brozena A H, Moskowitz J, Shao B, Deng S, Liao H, Gaskell K J, Wang Y H. Outer wall selectively oxidized, water-soluble double-walled carbon nanotubes. Journal of the American Chemical Society , 2010, 132(11): 3932–3938
doi: 10.1021/ja910626u pmid:20178323
14 Yu Y, Yu J C, Yu J G, Kwok Y C, Che Y K, Zhao J C, Ding L, Ge W K, Wong P K. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes Appl. Catal. A , 2005, 289(2): 186–196
doi: 10.1016/j.apcata.2005.04.057
15 Wu J H, Li P J, Hao S C, Yang H X, Lan Z. A polyblend electrolyte(PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells. Electrochimica Acta , 2007, 52(17): 5334–5338
doi: 10.1016/j.electacta.2006.12.067
16 Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Béguin F, Bonnamy S. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon , 2004, 42(5–6): 1147–1151
doi: 10.1016/j.carbon.2003.12.041
17 Yen C Y, Lin Y F, Hung C H, Tseng Y H, Ma C C, Chang M C, Shao H. The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites. Nanotechnology , 2008, 19(4): 045604
doi: 10.1088/0957-4484/19/04/045604 pmid:21817510
18 Yen C Y, Lin Y F, Liao S H, Weng C C, Huang C C, Hsiao Y H, Ma C C, Chang M C, Shao H, Tsai M C, Hsieh C K, Tsai C H, Weng F B. Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology , 2008, 19(37): 375305
doi: 10.1088/0957-4484/19/37/375305 pmid:21832549
19 Sawatsuk T, Chindaduang A, Sae-kung C, Pratontep S, Tumcharern G. Dye-sensitized solar cells based on TiO2-MWCNTs composite electrodes: Performance improvement and their mechanisms. Diamond and Related Materials , 2009, 18(2–3): 524–527
doi: 10.1016/j.diamond.2008.10.052
20 Lee K M, Hu C W, Chen H W, Ho K C. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Materials and Solar Cells , 2008, 92(12): 1628–1633
doi: 10.1016/j.solmat.2008.07.012
21 Zhang D S, Downing J A, Knorr F J, McHale J L. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. Journal of Physical Chemistry B , 2006, 110(43): 21890–21898
22 Hsu C P, Lee K M, Huang J T W, Lin C Y, Lee C H, Wang L P, Tsai S Y, Ho K C. EIS analysis on low temperature fabrication of TiO2 porous ?lms for dye-sensitized solar cells. Electrochimica Acta , 2008, 53(25): 7514–7522
Related articles from Frontiers Journals
[1] Davinder RATHEE, Sandeep K ARYA, Mukesh KUMAR. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties[J]. Front Optoelec Chin, 2011, 4(4): 349-358.
Full text