Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 80-86     DOI: 10.1007/s12200-011-0209-y
RESEARCH ARTICLE |
Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye
Quanyou FENG, Hong WANG, Gang ZHOU, Zhong-Sheng WANG()
Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
Download: PDF(257 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of coadsorption with deoxycholic acid (DCA) on the performance of dye-sensitized solar cell (DSSC) based on [(C4H9)4N]3[Ru(Htcterpy)(NCS)3](tcterpy= 4,4′,4″-tricarboxy-2,2′:6′,2″-terpyridine), a so-called black dye, had been investigated. Results showed that the coadsorption of DCA with the black dye results in significant improvement in the photocurrent and mild increase in the photovoltage, which leads to an enhancement of overall power conversion efficiency by 9%. The enhancement of photocurrent was attributed to the increased efficiency of charge collection and/or electron injection. The coadsorption with DCA suppressed charge recombination and thus improved open-circuit photovoltage.

Keywords dye-sensitized solar cell (DSSC)      coadsorption      black dye     
Corresponding Authors: WANG Zhong-Sheng,Email:zs.wang@fudan.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Quanyou FENG,Hong WANG,Gang ZHOU, et al. Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye[J]. Front Optoelec Chin, 2011, 4(1): 80-86.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0209-y
http://journal.hep.com.cn/foe/EN/Y2011/V4/I1/80
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Quanyou FENG
Hong WANG
Gang ZHOU
Zhong-Sheng WANG
Fig.1  Molecular structures of black dye (a) and DCA (b). TBA stands for tetrabutylammonium
Fig.1  Molecular structures of black dye (a) and DCA (b). TBA stands for tetrabutylammonium
Fig.2  UV-vis absorption spectra of the black dye in ethanol. (a) Without DCA; (b) with 20 mM DCA
Fig.2  UV-vis absorption spectra of the black dye in ethanol. (a) Without DCA; (b) with 20 mM DCA
Fig.3  UV-vis absorption spectra of TiO films (1.8 μm) exposed to 0.2 mM black dye solution. (a) Without DCA; (b) with 20 mM DCA. The bare TiO film (transparent) was used as a reference for the spectrum scan
Fig.3  UV-vis absorption spectra of TiO films (1.8 μm) exposed to 0.2 mM black dye solution. (a) Without DCA; (b) with 20 mM DCA. The bare TiO film (transparent) was used as a reference for the spectrum scan
Fig.4  Cyclic voltammograms of TiO films after dipping in the following solutions. (a) 0.2 mM black dye; (b) 0.2 mM black dye+ 20 mM DCA
Fig.4  Cyclic voltammograms of TiO films after dipping in the following solutions. (a) 0.2 mM black dye; (b) 0.2 mM black dye+ 20 mM DCA
Fig.5  IPCE action spectra of DSSCs based on (a) black dye; (b) black dye/DCA with scattering films (25 μm)
Fig.5  IPCE action spectra of DSSCs based on (a) black dye; (b) black dye/DCA with scattering films (25 μm)
Fig.6  - curves for DSSCs incorporating (a) black dye; (b) black dye /DCA with scattering films (25 μm)
Fig.6  - curves for DSSCs incorporating (a) black dye; (b) black dye /DCA with scattering films (25 μm)
Jsc/(mA·cm-2)Voc/VFFη/%
black dye17.670.710.718.91
black dye/DCA18.810.730.719.74
Tab.1  Effect of coadsorption of DCA on the photovoltaic performance of the DSSC
Fig.7  Dark current with applied potential for DSSCs based on (a) black dye; (b) black dye/DCA
Fig.7  Dark current with applied potential for DSSCs based on (a) black dye; (b) black dye/DCA
Fig.8  Electrochemical impedance spectra of DSSCs based on (a) black dye; (b) black dye/DCA
Fig.8  Electrochemical impedance spectra of DSSCs based on (a) black dye; (b) black dye/DCA
1 Robertson N. Optimizing dyes for dye-sensitized solar cells. Angewandte Chemie International Edition , 2006, 45(15): 2338–2345
doi: 10.1002/anie.200503083 pmid:16526079
2 Lewis N S. Toward cost-effective solar energy use. Science , 2007, 315(5813): 798–801
doi: 10.1126/science.1137014 pmid:17289986
3 Xu M F, Wenger S, Bala H, Shi D, Li R Z, Zhou Y Z, Zakeeruddin S M, Gr?tzel M, Wang P. Tuning the energy level of organic sensitizers for high-performance dye-sensitized solar cells. Journal of Physical Chemistry C , 2009, 113(7): 2966–2973
doi: 10.1021/jp809319x
4 O’Regan B, Gr?tzel M. A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
5 Nazeeruddin M K, Péchy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Gr?tzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society , 2001, 123(8): 1613–1624
doi: 10.1021/ja003299u pmid:11456760
6 Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H. Design of new coumarin dyes having thiophene moieties for highly efficient organic dye-sensitized solar cells. New Journal of Chemistry , 2003, 27(5): 783–785
doi: 10.1039/b300694h
7 Horiuchi T, Miura H, Sumioka K, Uchida S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society , 2004, 126(39): 12218–12219
doi: 10.1021/ja0488277 pmid:15453726
8 Hagberg D P, Edvinsson T, Marinado T, Boschloo G, Hagfeldt A, Sun L C. A novel organic chromophore for dye-sensitized nanostructured solar cells. Chemical Communications , 2006, 21(21): 2245–2247
doi: 10.1039/b603002e pmid:16718317
9 Choi H, Baik C, Kang S O, Ko J, Kang M S, Nazeeruddin M K, Gr?tzel M. Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angewandte Chemie International Edition , 2008, 47(2): 327–330
doi: 10.1002/anie.200703852 pmid:18022883
10 Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Gr?tzel M. Conversion of light to electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society , 1993, 115(14): 6382–6390
doi: 10.1021/ja00067a063
11 Wang Z-S, Koumura N, Cui Y, Takahashi M, Sekiguchi H, Mori A, Kubo T, Furube A, Hara K. Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics: tuning of solar cell performance by structural modification. Chemistry of Materials , 2008, 20(12): 3993–4003
doi: 10.1021/cm8003276
12 Ning Z, Zhang Q, Wu W, Pei H, Liu B, Tian H. Starburst triarylamine based dyes for efficient dye-sensitized solar cells. Journal of Organic Chemistry , 2008, 73(10): 3791–3797
doi: 10.1021/jo800159t pmid:18412319
13 Islam A, Sugihara H, Yanagida M, Hara K, Fujihashi G, Tachibana Y, Katoh R, Murata S, Arakawa H. Efficient panchromatic sensitization of nanocrystalline TiO2 films by beta-diketonato ruthenium polypyridyl complexes. New Journal of Chemistry , 2002, 26(8): 966–968
doi: 10.1039/b202392j
14 Wang P, Humphry-Baker R, Moser J E, Zakeeruddin S M, Gr?tzel M. Amphiphilic polypyridyl ruthenium complexes with substituted 2,2'-dipyridylamine ligands for nanocrystalline dye-sensitized solar cells. Chemistry of Materials , 2004, 16(17): 3246–3251
doi: 10.1021/cm049871o
15 Altobello S, Argazzi R, Caramori S, Contado C, Da Fré S, Rubino P, Choné C, Larramona G, Bignozzi C A. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. Journal of the American Chemical Society , 2005, 127(44): 15342–15343
doi: 10.1021/ja053438d pmid:16262377
16 Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson N A, Ai X, Lian T, Yanagida S. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chemistry of Materials , 2004, 16(9): 1806–1812
doi: 10.1021/cm0349708
17 Gr?tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A Chemistry , 2004, 164(1–3): 3–14
doi: 10.1016/j.jphotochem.2004.02.023
18 Nazeeruddin M K, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gr?tzel M G. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society , 2005, 127(48): 16835–16847
doi: 10.1021/ja052467l pmid:16316230
19 Wang Z-S, Yamaguchi T, Sugihara H, Arakawa H. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir , 2005, 21(10): 4272–4276
doi: 10.1021/la050134w pmid:16032834
20 Bauer C, Boschloo G, Mukhtar E, Hagfeldt A. Interfacial electron-transfer dynamics in Ru(tcterpy)(NCS)3-sensitized TiO2 nanocrystalline solar cells. Journal of Physical Chemistry B , 2002, 106(49): 12693–12704
doi: 10.1021/jp0200268
21 Hara K, Nishikawa T, Kurashige M, Kawauchi H, Kashima T, Sayama K, Aika K, Arakawa H. Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(II) terpyridyl complex photosensitizer. Solar Energy Materials and Solar Cells , 2005, 85(1): 21–30
22 Ren X M, Feng Q Y, Zhou G, Huang C H, Wang Z-S. Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells. Journal of Physical Chemistry C , 2010, 114(15): 7190–7195
doi: 10.1021/jp911630z
23 Wang Z-S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews , 2004, 248(13–14): 1381–1389
doi: 10.1016/j.ccr.2004.03.006
24 Nazeeruddin M K, Pechy P, Gr?tzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chemical Communications , 1997, 18(18): 1705–1706
doi: 10.1039/a703277c
25 Sayama K, Tsukagoshi S, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H. Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. Journal of Physical Chemistry B , 2002, 106(6): 1363–1371
doi: 10.1021/jp0129380
26 Sayama K, Hara K, Mori N, Satsuki M, Suga S, Tsukagoshi S, Abe Y, Sugihara H, Arakawa H. Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chemical Communications , 2000, 13(13): 1173–1174
doi: 10.1039/b001517m
27 Neale N R, Kopidakis N, van de Lagemaat J, Gr?tzel M, Frank A J. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement. Journal of Physical Chemistry B , 2005, 109(49): 23183–23189
doi: 10.1021/jp0538666 pmid:16375281
28 Wang Z-S, Zhou G. Effect of surface protonation of TiO2 on charge recombination and conduction band edge movement in dye-sensitized solar cells. Journal of Physical Chemistry C , 2009, 113(34): 15417–15421
doi: 10.1021/jp905366t
29 Gregg B A, Pichot F, Ferrere S, Fields C L. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. Journal of Physical Chemistry B , 2001, 105(7): 1422–1429
doi: 10.1021/jp003000u
30 Choi H, Raabe I, Kim D, Teocoli F, Kim C, Song K, Yum J H, Ko J, Nazeeruddin M K, Gr?tzel M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chemistry-a European Journal , 2010, 16(4): 1193–1201
doi: 10.1002/chem.200902197 pmid:19998435
31 Wang Q, Moser J E, Gr?tzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Journal of Physical Chemistry B , 2005, 109(31): 14945–14953
doi: 10.1021/jp052768h pmid:16852893
Related articles from Frontiers Journals
[1] Cunxi CHENG, Jihuai WU, Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
[2] Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(4): 369-377.
[3] Shuangying XU, Linhua HU, Jiang SHENG, Dongxing KOU, Huajun TIAN, Songyuan DAI. Electron transportation and optical properties of micro-structure TiO2 films: applied in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 72-79.
[4] Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 65-71.
[5] Chang-Ryul LEE, Hui-Seon KIM, Nam-Gyu PARK. Dependence of porosity, charge recombination kinetics and photovoltaic performance on annealing condition of TiO2 films[J]. Front Optoelec Chin, 2011, 4(1): 59-64.
[6] Hong LIN, Feng HAO, Jianbao LI. Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 45-52.
[7] Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Front Optoelec Chin, 2011, 4(1): 24-44.
[8] Qingqing MIAO, Mingxing WU, Wei GUO, Tingli MA. Studies of high-efficient and low-cost dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed