Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 359-363     DOI: 10.1007/s12200-011-0176-3
RESEARCH ARTICLE |
Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement
Xiaomeng SUN, Linjie ZHOU(), Xinwan LI, Jingya XIE, Jianping CHEN
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download: PDF(264 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrically tunable silicon (Si) plasmonic phase modulators with nano-scale optical confinement are presented and analyzed in this study. The modulation is realized based on two mechanisms: free carrier plasma dispersion effect in Si and high electro-optic effect in polymer. The phase modulators can be found potential applications in optical telecommunication and interconnect.

Keywords surface plasmons      photonic integrated circuits      free carrier plasma dispersion effect      electro-optic effect     
Corresponding Authors: ZHOU Linjie,Email:ljzhou@sjtu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Xinwan LI,Jingya XIE,Linjie ZHOU, et al. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0176-3
http://journal.hep.com.cn/foe/EN/Y2011/V4/I4/359
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinwan LI
Jingya XIE
Linjie ZHOU
Xiaomeng SUN
Jianping CHEN
Fig.1  (a) Schematic of proposed plasmonic phase modulator; (b) and (c) cross-sectional view of plasmonic waveguide based on (b) free carrier plasma dispersion effect in silicon and (c) electro-optic effect in polymer
Fig.2  (a) Simulated electric-field mode pattern of plasmonic waveguide; (b) effective refractive index and propagation loss vs. sidewall oxide width; (c) coupling efficiency vs. taper length; (d) electric-field pattern showing the coupling from silicon waveguide to plasmonic waveguide. Waveguide parameters are set as = 100 nm, = 200 nm, , and = 10 nm
Fig.3  (a)-(c) Three working regimes under properly applied voltages; (d) and (e) free-carrier distribution in silicon waveguide core region with applied voltages of (d) 5 V and (e) -5 V; (f) effective refractive index change vs. applied voltage
Fig.4  Phase shift of a 13-μm-long plasmonic waveguide vs. drive voltage
1 Boardman A D. Electromagnetic Surface Modes. New York: Wiley, 1982
2 Agranovich VM, Mills DL. Surface polaritons: electromagnetic waves at surfaces and interfaces. Journal of the Optical Society of America B, Optical Physics , 1984, 1(3): 410
3 Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics , 2010, 4(2): 83-91
doi: 10.1038/nphoton.2009.282
4 Soref R, Bennett B. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics , 1987, 23(1): 123-129
doi: 10.1109/JQE.1987.1073206
5 Johnson P B, Christy R W. Optical constants of the noble metals. Physical Review B: Condensed Matter, 1972, 6(12): 4370-4379
doi: 10.1103/PhysRevB.6.4370
6 Wang G X, Tom B J, Michael H, Axel S. Design and fabrication of segmented, slotted waveguides for electro-optic modulation. Applied Physics Letters , 2007, 91(14): 143109
doi: 10.1063/1.2793618
7 Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed . New York:Wiley, 2007
8 Xu Q F, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature , 2005, 435(7040): 325-327
doi: 10.1038/nature03569
9 Sun X M, Zhou L J, Li X W, Hong Z H, Chen J P. Design and analysis of a phase modulator based on ametal-polymer-silicon hybrid plasmonic waveguide. Applied Optics , 2011, 50(20): 3428-3434
doi: 10.1364/AO.50.003428
10 Baehr-Jones T, Penkov B, Huang J Q, Sullivan P, Davies J, Takayesu J, Luo J D, Kim T D, Dalton L, Jen A, Hochberg M, Scherer A. Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V. Applied Physics Letters , 2008, 92(16): 163303
doi: 10.1063/1.2909656
11 Kim T D, Kang J W, Luo J D, Jang S H, Ka J W, Tucker N, Benedict J B, Dalton L R, Gray T, Overney R M, Park D H, Herman W N, Jen A K Y. Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. Journal of the American Chemical Society , 2007, 129(3): 488-489
doi: 10.1021/ja067970s
12 Brosi J M, Koos C, Andreani L C, Waldow M, Leuthold J, Freude W. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express , 2008, 16(6): 4177-4191
doi: 10.1364/OE.16.004177
13 Dalton L R. Organic electro-optic materials. Pure Applied Chem istry , 2004, 76(7-8): 1421-1433
Related articles from Frontiers Journals
[1] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[2] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[3] Xiaoliu ZUO, Zhijun SUN. Hybrid surface plasmon modes in metal-clad Si/SiO2 waveguide for compact integration[J]. Front Optoelec, 2013, 6(3): 261-269.
[4] Yikai SU, Gan ZHOU, Fei LI, Tao WANG. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing[J]. Front Optoelec Chin, 2011, 4(3): 264-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed