Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 420-425     DOI: 10.1007/s12200-011-0172-7
RESEARCH ARTICLE |
Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength
Saeed OLYAEE(), Fahimeh TAGHIPOUR, Mahdieh IZADPANAH
Nano-photonics and Optoelectronics Research Laboratory (NORLab), Faculty of Electrical and Computer Engineering, Shahid RajaeeTeacher Training University (SRTTU), Lavizan 16788-15811, Iran
Download: PDF(478 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a new simple structure of index-guiding photonic crystal fiber (PCF) is designed and presented. In this PCF, dispersion, confinement loss, and effective mode area characteristics are investigated in the second communication window (1.55 μm). Since 1.55 μm wavelength is widely used in optical communication systems, we try to optimize the PCF characteristics in this wavelength by designing an index-guiding PCF and three versions of optimized PCF. The results show that the dispersion is obtained very close to zero around 4.6×10-4 ps/(nm·km). Also, the confinement loss is 2.303×10-6 dB/km and effective mode area is as small as 2.6 μm2.

Keywords dispersion      effective area      confinement loss      index-guiding      photonic crystal fiber (PCF)     
Corresponding Authors: OLYAEE Saeed,Email:s_olyaee@srttu.edu   
Issue Date: 05 December 2011
 Cite this article:   
Mahdieh IZADPANAH,Saeed OLYAEE,Fahimeh TAGHIPOUR. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0172-7
http://journal.hep.com.cn/foe/EN/Y2011/V4/I4/420
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mahdieh IZADPANAH
Saeed OLYAEE
Fahimeh TAGHIPOUR
Fig.1  Primary structure of PCF with air hole diameter , lattice constant Λ, and 6 air-hole rings
Fig.2  Dispersion curve of primary PCF for different hole diameters and Λ=1.3μm
Fig.3  Dispersion of the primary PCF for different hole diameters and Λ=1.3 μm and for wavelengths around 1.55 μm
Fig.4  Confinement loss curves in primary PCF for different air-holes and Λ=1.3 μm
Fig.5  Confinement loss curves in primary PCF for different air-holes and Λ=1.3 μm around the 1.55 μm wavelength
Fig.6  PCF structure with Λ = 1.3 μm (diameter of air-holes in four inner rings is = 0.90836 μm and the diameter of the air-holes in two last rings is = 1.2 μm)
Fig.7  Confinement loss curve in PCF (a) in a wide wavelength range and (b) around 1.55 μm wavelength
Fig.8  (a) PCF structure with Λ=1.3 μm, = 0.90836 μm (diameter of air-holes in three inner rings) and = 1.2 μm (diameter of air holes in the last three rings) and (b) mode field distribution in the core of PCF
Fig.9  Confinement loss in PCF (a) in a wide wavelength range and (b) around 1.55 μm wavelength
Fig.10  PCF structure with Λ = 1.3 μm and five air hole rings. The diameter of air-holes in the three inner rings is = 0.90836 μm and the diameter of air holes in the two last rings is = 1.2 μm
Fig.11  Confinement loss in PCF (a) in a broad wavelength range and (b) around 1.55 μm wavelength
Fig.12  Comparison between dispersion curves of PCF, PCF, and PCF structures around 1.55 μm wavelength
1 Knight J C, Birks T A, Russell P St J, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters , 1996, 21(19): 1547–1549
doi: 10.1364/OL.21.001547 pmid:19881720
2 Hansen K P. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express , 2003, 11(13): 1503–1509
doi: 10.1364/OE.11.001503 pmid:19466023
3 Hai N H, Namihiray Y, Kaijage S F, Kinjo T, Begum F, Abdur Razzak S M, Zou N. A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes. Optical Review , 2008, 15(2): 91–96
doi: 10.1007/s10043-008-0013-0
4 Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express , 2003, 11(8): 843–852
doi: 10.1364/OE.11.000843 pmid:19461798
5 Gundu K M, Kolesik M, Moloney J V, Lee K S. Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers. Optics Express , 2006, 14(15): 6870–6878
doi: 10.1364/OE.14.006870 pmid:19516870
6 Wang W, Hou L T, Lu M, Zhou G Y. Design of double cladding nearly zero dispersion flattened photonic crystal fiber. Chinese Physics Letters , 2009, 26(11): 114205
7 Olyaee S, Taghipour F. Design of new square-lattice photonic crystal fibers for optical communication applications. International Journal of Physical Science , 2011, 6(18): 4405–4411
8 Saitoh K, Florous N, Koshiba M.Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Optics Express , 2005, 13(21): 8365–8371
9 Chen M, Xie S Z. New nonlinear and dispersion flattened photonic crystal fiber with low confinement loss. Optics Communications , 2008, 281(8): 2073–2076
doi: 10.1016/j.optcom.2007.12.006
10 Olyaee S, Taghipour F. Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area. IET Optoelectronics , 2011 (accepted)
11 Olyaee S, Taghipour F. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss. Journal of Physics: Conference Series , 2010, 276(1): 012080
doi: 10.1088/1742-6596/276/1/012080
12 Uddin M J, Alam M S. Dispersion and confinement loss of photonic crystal fibers. Asian Journal of Information Technology , 2008, 7(8): 344
13 Abdur Razzak S M, Namihiray Y, Kinjo T, Kaijage S F, Hai N H, Miyagi K. Design of highly nonlinear birefringent photonic crystal fibers with ultra-flattened chromatic dispersion. Applied Physics Express , 2008, 1(6): 062006
doi: 10.1143/APEX.1.062006
Related articles from Frontiers Journals
[1] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[2] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[3] Saeed OLYAEE,Hassan ARMAN. Improved gas sensor with air-core photonic bandgap fiber[J]. Front. Optoelectron., 2015, 8(3): 314-318.
[4] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[7] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[8] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[9] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[10] Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
[11] Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
[12] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
[13] Wei CHEN, Shiyu LI, Peixiang LU, Dongxiang WANG, Wenyong LUO. Dispersion compensation optical fiber modules for 40 Gbps WDM communication systems[J]. Front Optoelec Chin, 2010, 3(4): 333-338.
[14] Yongzhao XU, Zhixin CHEN, Hongtao LI, Yanfen WEI. Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows[J]. Front Optoelec Chin, 2009, 2(3): 293-298.
[15] Shuang LIU, Junqiang SUN, Ping SHUM. Stable and high-performance multiwavelength erbium-doped fiber laser based on fiber delay interferometer[J]. Front Optoelec Chin, 2009, 2(2): 195-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed