Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2009, Vol. 2 Issue (3) : 293-298     DOI: 10.1007/s12200-009-0013-0
Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows
Yongzhao XU1(), Zhixin CHEN2, Hongtao LI1, Yanfen WEI3
1. Department of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China; 2. School of Information, Central University of Finance and Economics, Beijing 100081, China; 3. Tianjin Mobile Communications Corporation, Tianjin 300021, China
Download: PDF(169 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

We numerically studied supercontinuum generation in a tapered photonic crystal fiber with flattened dispersion properties. The fiber was weakly tapered to have normal dispersion at wavelengths around 1.55 μm after a certain distance. We pumped 4 ps pulses with low peak power and found that flatly broadened, wideband supercontinuum was generated in telecommunication windows. Furthermore, we also demonstrated the effects of tapered length and pulse width of the pump pulse on supercontinuum generation.

Keywords fiber optics      photonic crystal fiber      dispersion      supercontinuum     
Corresponding Authors: XU Yongzhao,   
Issue Date: 05 September 2009
 Cite this article:   
Yongzhao XU,Zhixin CHEN,Hongtao LI, et al. Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows[J]. Front Optoelec Chin, 2009, 2(3): 293-298.
E-mail this article
E-mail Alert
Articles by authors
Yongzhao XU
Zhixin CHEN
Hongtao LI
Yanfen WEI
Fig.1  Chromatic dispersion profiles of tapered PCF with air-hole pitch Λ decreasing from 2.6 to 2.4 μm
Fig.2  Chromatic dispersion at wavelength of 1.55 μm versus air-hole pitch Λ
Fig.3  Dispersion coefficients /(ps·km), /(10ps·km), /(10ps·km), and /(10ps·km) versus air-hole pitch Λ
Fig.4  SC generated from tapered PCF
Fig.5  Evolution of pump pulse along fiber. (a) Temporal evolution; (b) evolution of 30-dB spectrum width along propagation distance, where dot line indicates the distance of
Fig.6  Spectral evolution in vicinity of
Fig.7  Minimum effective peak powers of pump pulses for generating flat wideband SC versus tapered length of PCF
Fig.8  Generated SCs for different input pulse width
Fig.9  30-dB spectrum width and effective peak power of pump pulses versus fiber loss
1 Ravi Kanth Kumar V V, George A K, Reeves W H, Knight J C,Russell P St J . Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express , 2002, 10(25): 1520-1525
2 Yu Y Q, Ruan S C, Du C L, Yao J Q. Spectral broadening in the 1.3 μm region using a 1.8-m-long photonic crystal fiber by femtosecond pulses from an optical parametric amplifier. Acta Photonica Sinica , 2005, 34(4): 481-484 (in Chinese)
3 Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse. Chinese Physics Letters , 2007, 24(3): 734-737
doi: 10.1088/0256-307X/24/3/040
4 Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber. Acta Physica Sinica , 2004, 53(12): 4243-4247 (in Chinese)
5 Yu Y Q, Ruan S C, Du C L, Yao J Q. Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser. Chinese Physics Letters , 2005, 22(2): 384-387
doi: 10.1088/0256-307X/22/2/032
6 Kudlinski A, George A K. Knight J C. Travers J C, Rulkov A B, Popov S V, Taylor J R. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express , 2006, 14(12): 5715-5722
doi: 10.1364/OE.14.005715
7 Ohara T, Takara H, Yamamoto T, Masuda H, Morioka T, Abe M, Takahashi H. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. Journal of Lightwave Technology , 2006, 24(6): 2311-2317
doi: 10.1109/JLT.2006.874548
8 Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flatly broadened supercontinuum generation at 10 Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion. Electronics Letters , 2007, 43(2): 87-88
doi: 10.1049/el:20073303
9 Yusoff Z, Petropoulos P, Furusawa K, Monro T M, Richardson D J. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters , 2003, 15 (12): 1689-1691
doi: 10.1109/LPT.2003.819733
10 Nakasyotani T, Toda H, Kuri T, Kitayama K. Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology , 2006, 24(1): 404-410
doi: 10.1109/JLT.2005.859854
11 Lee J H, Kim C H, Han Y G, Lee S B. WDM-based passive optical network upstream transmission at 1.25 Gb/s using Fabry–Pérot laser diodes injected with spectrum-sliced, depolarized, continuous-wave supercontinuum source. IEEE Photonics Technology Letters , 2006, 18 (17–20): 2108-2110
doi: 10.1109/LPT.2006.883288
12 Wu W Q, Chen X W, Zhou H, Zhou K F, Lin X S, Lan S. Investigation of the ultraflattened dispersion in photonic crystal fibers with hybrid cores. Acta Photonica Sinica , 2006, 35(1): 109-113 (in Chinese)
13 Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express , 2004, 12(10): 2027-2032
doi: 10.1364/OPEX.12.002027
14 Wu T L, Chao C H. A novel ultraflattened dispersion photonic crystal fiber. IEEE Photonics Technology Letters , 2005, 17 (1); 67-69
doi: 10.1109/LPT.2004.837475
15 Matsui T, Nakajima K, Sankawa I. Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber. Journal of Lightwave Technology , 2007, 25(3): 757-762
doi: 10.1109/JLT.2006.889668
16 Liu J G, Xue L F, Wang Z, Kai G Y, Liu Y G, Zhang W G, Dong X Y. Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes. IEEE Journal of Quantum Electronics , 2006, 42 (9): 961-968
doi: 10.1109/JQE.2006.880375
17 Ju J, Jin W, Suleyman Demokan M. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology , 2006, 24(2): 825-830
doi: 10.1109/JLT.2005.861942
18 Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express , 2003, 11(13): 1537-1540
19 Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics , 2002, 38 (7): 927-933
doi: 10.1109/JQE.2002.1017609
20 Agrawal G P. Nonlinear Fiber Optics. 2nd ed. New York: Academic Press, 1995
Related articles from Frontiers Journals
[1] Kaiwei LI,Ting ZHANG,Nan ZHANG,Mengying ZHANG,Jing ZHANG,Tingting WU,Shaoyang MA,Junying WU,Ming CHEN,Yi HE,Lei WEI. Integrated liquid crystal photonic bandgap fiber devices[J]. Front. Optoelectron., 2016, 9(3): 466-482.
[2] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[3] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[4] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[7] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[8] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[9] Bingrong ZOU, Yu YU, Wenhan WU, Shoujin HU, Zheng ZHANG, Xinliang ZHANG. All-optical format conversion from RZ-QPSK to NRZ-QPSK[J]. Front Optoelec, 2012, 5(3): 330-333.
[10] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[11] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[12] Saeed OLYAEE, Fahimeh TAGHIPOUR, Mahdieh IZADPANAH. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
[13] Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
[14] Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
[15] Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
Full text