Please wait a minute...

Frontiers in Energy

Front. Energy    2017, Vol. 11 Issue (2) : 197-209
Review of stochastic optimization methods for smart grid
S. Surender REDDY1, Vuddanti SANDEEP2, Chan-Mook JUNG3()
1. Department of Railroad and Electrical Engineering, Woosong University, Republic of Korea
2. School of Engineering, Central University of Karnataka, India
3. Department of Railroad and Civil Engineering, Woosong University, Republic of Korea
Download: PDF(233 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This paper presents various approaches used by researchers for handling the uncertainties involved in renewable energy sources, load demands, etc. It gives an idea about stochastic programming (SP) and discusses the formulations given by different researchers for objective functions such as cost, loss, generation expansion, and voltage/V control with various conventional and advanced methods. Besides, it gives a brief idea about SP and its applications and discusses different variants of SP such as recourse model, chance constrained programming, sample average approximation, and risk aversion. Moreover, it includes the application of these variants in various power systems. Furthermore, it also includes the general mathematical form of expression for these variants and discusses the mathematical description of the problem and modeling of the system. This review of different optimization techniques will be helpful for smart grid development including renewable energy resources (RERs).

Keywords renewable energy sources      stochastic optimization      smart grid      uncertainty      optimal power flow (OPF)     
Corresponding Authors: Chan-Mook JUNG   
Just Accepted Date: 15 February 2017   Online First Date: 21 March 2017    Issue Date: 01 June 2017
 Cite this article:   
S. Surender REDDY,Vuddanti SANDEEP,Chan-Mook JUNG. Review of stochastic optimization methods for smart grid[J]. Front. Energy, 2017, 11(2): 197-209.
E-mail this article
E-mail Alert
Articles by authors
S. Surender REDDY
Vuddanti SANDEEP
Chan-Mook JUNG
Fig.1  Flowchart for handling the uncertainty using MCS in the smart grid context
Tab.1  Comparison of SP variants []
Tab.2  Comparison of SP variants in terms of initialization, necessary and feasible conditions
Tab.3  Comparison of OPF methods [,], [,], []
Tab.4  Various optimization problem formulations for specific objective using different methods
1 Pimentel D, Herz  M, Glickstein M ,  Zimmerman M ,  Allen R ,  Becker K ,  Evans J ,  Hussain B ,  Sarsfeld R ,  Grosfeld A ,  Seidel T . Renewable energy: current and potential issues. Bioscience, 2002, 52(12): 1111–1120
2 Ochoa L F, Harrison  G P. Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation. IEEE Transactions on Power Systems, 2011, 26(1): 198–205
3 Pepermans G, Driesen  J, Haeseldonckx D ,  D’haeseleer W ,  Belmans R . Distributed generation: definition, benefits and issues. Energy Policy, 2005, 33(6): 787–798
4 Rasmussen C N . Energy storage for improvement of wind power characteristics. IEEE TrondheimPowertech, 2011: 1–8
5 Jabr R A, Pal  B C. Intermittent wind generation in optimal power flow dispatching. IET Generation, Transmission & Distribution, 2009, 3(1): 66–74
6 PSERC Executive Committee. “Challenges in integrating renewable technologies into an electric power system” white paper, April 2010
7 Amarnath R V, Ramana  N V. State of art in optimal power flow solution methodologies. Journal of Theoretical and Applied Information Technology, 2011, 30(2): 128–154
8 Selvi V, Umarani  R. Comparative analysis of ant colony and particle swarm optimization techniques. International Journal of Computers and Applications, 2010, 5(4): 1–6
9 AlRashidi M R ,  El-Hawary M E . A survey of particle swarm optimization applications in electric power systems. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 913–918
10 Momoh J A, Adapa  R, El-Hawary M E . A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Transactions on Power Systems, 1999, 14(1): 96–104
11 Monticelli A, Pereira  M V F, Granville  S. Security constrained optimal power flow with post-contingency corrective rescheduling. IEEE Transaction on Power System, 1987, pwrs-2:1(1): 175–180
12 Stott B, Alsac  O, Monticelli A . Security analysis and optimization. Proceedings of the IEEE, 1987, 75(12): 1623–1644
13 Birge J R, Louveaux  F. Introduction to Stochastic Programming.New York: Springer-Verlag, 1997
14 Allan R N, Da Silva  A M L, Burchett  R C. Evaluation methods and accuracy in probabilistic load flow solutions. IEEE Transactions on Power Apparatus & Systems, 1981, PAS-100(5): 2539–2546
15 Chandy K M, Low  S H, Topcu  U, Xu H . A simple optimal power flow model with energy storage. 49th IEEE Conference on Decision and Control, 2011: 58(8) 1051–1057
16 Yau T, Walker  L, Graham H ,  Gupta A . Effects of battery storage devices on power system dispatch. IEEE Transactions on Power Apparatus & Systems, 1981, PAS-100(1): 375–383
17 Su W, Wang  J, Roh J . Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Transactions on Smart Grid, 2013, 5(4): 1876–1883
18 Liu G, Xu  Y, Tomsovic K . Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization. IEEE Transactions on Smart Grid, 2016, 7(1): 227–237
19 Nikmehr N, Najafi-Ravadanegh  S. Probabilistic optimal power dispatch in multi-microgrids using heuristic algorithms. In: Smart Grid Conference, Tehran, 2014: 1–6
20 Liang H, Zhuang  W. Stochastic modeling and optimization in a microgrid: a survey. Energies, 2014, 7(4): 2027–2050
21 Niknam T. Abarghooee  R A, Narimani M R . An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Applied Energy, 2012, 99(6): 455–470
22 Falsafi H, Zakariazadeh  A, Jadid S . The role of demand response in single and multi-objective wind-thermal generation scheduling: a stochastic programming. Energy, 2014, 64(1): 853–867
23 Khazali A, Kalantar  M. A stochastic–probabilistic energy and reserve market clearing scheme for smart power systems with plug-in electrical vehicles. Energy Conversion and Management, 2015,105: 1046–1058
24 Yu Z, Jia  L, Murphy-Hoye M C ,  Pratt A ,  Tong L. Modeling and stochastic control for home energy management. IEEE Transactions on Smart Grid, 2012, 4(4): 2244–2255
25 Romero-Ruiz J  ,  Pérez-Ruiz J  ,  Martin S  ,  AguadoJ A ,  De la Torre  S . Probabilistic congestion management using EVs in a smart grid with intermittent renewable generation. Electric Power Systems Research, 2016, 137: 155–162
26 Ringler P, Keles  D, Fichtner W . Agent-based modelling and simulation of smart electricity grids and markets: a literature review. Renewable & Sustainable Energy Reviews, 2016, 57: 205–215
27 Koohi-KamaliS, Rahim N A, MokhlisH ,  TyagiV V . Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review. Renewable & Sustainable Energy Reviews, 2016, 57(C): 131–172
28 Soroudi A. Robust optimization based self scheduling of hydro-thermal Genco in smart grids. Energy, 2013, 61(6): 262–271
29 ParhoudehS, Baziar A, MazareieA ,  Kavousi-FardA . A novel stochastic framework based on fuzzy cloud theory for modeling uncertainty in the micro-grids. International Journal of Electrical Power & Energy. 2016, 80: 73–80
30 SiddaiahR, Saini R P. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable & Sustainable Energy Reviews, 2016, 58: 376–396
31 MohammadiS, Mohammadi  A. Stochastic scenario-based model and investigating size of battery energy storage and thermal energy storage for micro-grid. International Journal of Electrical Power & Energy System, 2014, 61: 531–546
32 Soares J, Vale  Z. Stochastic optimization of distributed energy resources in smart grids. 2015, 
33 Chiang H D. Stochastic security-constrained AC optimal power flow solver for large power networks with renewable. 2015, 
34 Miranda V. Electric vehicles in smart grids: a hybrid Benders/EPSO solver for stochastic reservoir optimization. 2015, 
35 MohanV, Singh J G, OngsakulW ,  UnniA C ,  Sasidharan N . Stochastic effects of renewable energy and loads on optimizing microgrid market benefits. Procedia Technology, 2015, 21: 15–23
36 RekaS S, Ramesh  V. Demand side management scheme in smart grid with cloud computing approach using stochastic dynamic programming. Perspectives in Science, 2016
37 Sobu A, Wu  G. Optimal operation planning method for isolated micro grid considering uncertainties of renewable power generations and load demand. In: 2012 IEEE PES Innovative Smart Grid Technologies-Asia, Tianjin, 2012: 1–6
38 Küster T, Lützenberger  M, Voß M ,  Freund D ,  Albayrak S . Applying heuristics and stochastic optimization for load-responsive charging in a smart grid architecture. In: 2014 IEEE PES Innovative Smart Grid Technologies Conference Europe, Istanbul, 2014: 1–6
39 Zhu Z, Lambotharan  S, Chin W H ,  Fan Z. A stochastic optimization approach to aggregated electric vehicles charging in smart grids. In: 2014 IEEE Innovative Smart Grid Technologies-Asia, Kuala Lumpur, 2014: 51–56
40 Tan J, Wang  L. A stochastic model for quantifying the impact of PHEVs on a residential distribution grid. In: IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, Nanjing, 2013: 120–125
41 Haghi H V, Qu  Z, Lotfifard S . Analytics-based optimization for smart grid operations. In: IEEE International Workshop on Intelligent Energy Systems, San Diego, 2014: 58–63
42 Venayagamoorthy G K . Dynamic, stochastic, computational, and scalable technologies for smart grids. IEEE Computational Intelligence Magazine, 2011, 6(3): 22–35
43 Gong C, Wang  X, Xu W ,  Tajer A . Distributed real-time energy scheduling in smart grid: stochastic model and fast optimization. IEEE Transactions on Smart Grid, 2013, 4(3): 1476–1489
44 Momoh J A. Adaptive Stochastic Optimization Techniques with Applications. Boca Raton :CRC Press, 2015
45 Alguacil N, Conejo  A J. Multiperiod optimal power flow using benders decomposition. IEEE Transactions on Power Systems,  2000, 15(1): 196–201
46 Sortomme E, El-Sharkawi  M A. Optimal power flow for a system of microgrids with controllable loads and battery storage. Power Systems Conference & Exposition, 2009, 107(1): 1–5
47 Delson J K, Shahidehpour  S M. Linear programming applications to power system economics, planning and operations. IEEE Transactions on Power Systems, 1992, 7(3): 1155–1163
48 Hashemi-DezakiH, HamzehM,  Askarian-AbyanehH ,  Haeri-Khiavi H . Risk management of smart grids based on managed charging of PHEVs and vehicle-to-grid strategy using Monte Carlo simulation. Energy Conversion and Management, 2015, 100: 262–276
49 ArnoldU, Yildiz  Ö. Economic risk analysis of decentralized renewable energy infrastructures–a Monte Carlo simulation approach. Renewable Energy, 2015, 77: 227–239
50 PereiraE J S, Pinho J T, GalhardoM A B ,  Macêdo W N . Methodology of risk analysis by Monte Carlo method applied to power generation with renewable energy. Renewable Energy, 2014, 69(3): 347–355
51 Rosenblueth E. Point estimates for probability moments. Proceedings of the National Academy of Science of the United States of America, 1975, 72(10): 3812–3814
52 Rosenblueth E. Two-point estimates in probability. Applied Mathematical Modelling, 1981, 5(5): 329–335
53 Morales J M, Pérez-Ruiz  J. Point estimate schemes to solve the probabilistic power flow. IEEE Transactions on Power Systems, 2007, 22(4): 1594–1601
54 Verbic G, Canizares  C A. Probabilistic optimal power flow in electricity markets based on a two-point estimate method. IEEE Transactions on Power Systems, 2006, 21(4): 1883–1893
55 Surender Reddy S ,  Bijwe P R ,  Abhyankar A R . Optimal posturing in day-ahead market clearing for uncertainties considering anticipated real-time adjustment costs. IEEE Systems Journal, 2015, 9(1): 177–190
56 Reddy S S, Momoh  J A. Realistic and transparent optimum scheduling strategy for hybrid power system. IEEE Transactions on Smart Grid, 2015, 6(6): 1–1
57 Reddy S S, Bijwe  P R, Abhyankar  A R. Joint energy and spinning reserve market clearing incorporating wind power and load forecast uncertainties. IEEE Systems Journal, 2015, 9(1): 152–164
58 Geidl M, Andersson  G. A modeling and optimization approach for multiple energy carrier power flow. Power Technology, IEEE Russia, 2005, 38(16): 1–7
59 Momoh J A, Surender Reddy  S. Review of optimization techniques for renewable energy resources.IEEE Symposium on Power Electronics and Machines for Wind and Water Applications, Milwaukee, WI, 2014
60 Momoh J A, Reddy  S S, Baxi  Y. Stochastic Voltage/Var control with load variation. In: 2014 IEEEPES General Meeting | Conference & Exposition, National Harbor, MD (Washington, DC Metro Area), 2014
61 Momoh J A, Baxi  Y, Idubor A O . Frame work for real time optimal power flow using real time measurement tools and techniques. In : North American Power Symposium, Boston, 2011,1–7
62 Wei H, Sasaki  H, Kubokawa J ,  Yokoyama R . An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Transactions on Power Systems Pwrs, 1998, 47(3): 14–18
63 Alguacil N, Conejo  A J. Multi period optimal power flow using benders decomposition. IEEE Transactions on Power Systems, 2000, 15(1): 196–201
64 Todorovski M. Rajiˇcic   D. An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Transactions on Power Systems, 2006, 21(2): 480–487
65 Torres G, Quintana  V H. An interior point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Transactions on Power Systems, 1998, 13(4): 1211–1218
66 Jabr R A. Optimal power flow using an extended conic quadratic formulation. IEEE Transactions on Power Systems Pwrs, 2008, 23(3): 1000–1008
67 Li Y, McCalley  J D. Decomposed SCOPF for improving efficiency. IEEE Transactions on Power Systems Pwrs, 2009, 24(1): 494–495
68 Vovos P N, Harrison  G P, Wallace  A R, Bialek  J W. Optimal power flow as a tool for fault level-constrained network capacity analysis. IEEE Transactions on Power Systems, 2005, 20(2): 734–741
69 Moon G H, Wi  Y M, Lee  K, Joo S K . Fault current constrained decentralized optimal power flow incorporating superconducting fault current limiter (SFCL). IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2157–2160
Related articles from Frontiers Journals
[1] Sławomir DYKAS, Artur SZYMAŃSKI, Xiaoshu CAI. Real prospects for the development of power technologies based on renewable energy sources in Poland[J]. Front. Energy, 2017, 11(2): 168-174.
[2] S. Hari Charan CHERUKURI,Balasubramaniyan SARAVANAN. An overview of selected topics in smart grids[J]. Front. Energy, 2016, 10(4): 441-458.
[3] Balasubramaniyan SARAVANAN. DSM in an area consisting of residential, commercial and industrial load in smart grid[J]. Front. Energy, 2015, 9(2): 211-216.
[4] M. M. RAJAN SINGARAVEL,S. ARUL DANIEL. Sizing of hybrid PMSG-PV system for battery charging of electric vehicles[J]. Front. Energy, 2015, 9(1): 68-74.
[5] Belkacem MAHDAD, K. SRAIRI, B. TAREK. Interactive DE for solving combined security environmental economic dispatch considering FACTS technology[J]. Front Energ, 2013, 7(4): 429-447.
[6] Pathirikkat GOPAKUMAR, G. Surya CHANDRA, M. Jaya Bharata REDDY, Dusmata Kumar MOHANTA. Optimal redundant placement of PMUs in Indian power grid — northern, eastern and north-eastern regions[J]. Front Energ, 2013, 7(4): 413-428.
[7] Pathirikkat GOPAKUMAR, G. Surya CHANDRA, M. Jaya Bharata REDDY, Dusmata Kumar MOHANTA. Optimal placement of PMUs for the smart grid implementation in Indian power grid—A case study[J]. Front Energ, 2013, 7(3): 358-372.
[8] Pei LIU, Efstratios N. PISTIKOPOULOS, Zheng LI. Energy systems engineering: methodologies and applications[J]. Front. Energy, 2010, 4(2): 131-142.
Full text