Please wait a minute...

Frontiers in Energy

Front. Energy    2016, Vol. 10 Issue (4) : 375-381     https://doi.org/10.1007/s11708-016-0426-6
RESEARCH ARTICLE |
Distribution and temporal variability of the solar resource at a site in south-east Norway
Muyiwa S. ADARAMOLA()
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås 1430, Norway
Download: PDF(263 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Globally, solar energy is expected to play a significant role in the changing face of energy economies in the near future. However, the variability of this resource has been the main barrier for solar energy development in most locations around the world. This paper investigated the distribution and variability of solar radiation using the a 10-year (2006 to 2015) data collected at Sørås meteorological station located at latitude 59° 39′ N and longitude 10° 47′E, about 93.3 m above sea level (about 30 km from Oslo), in south-eastern part of Norway. It is found that on annual basis, the total number of days with a global solar radiation of less than 1 kWh/(m2·d) is 120 days while the total number of days with an expected global solar radiation greater than 3 kWh/(m2·d) is 156 days (42.74%) per year. The potential energy output from a horizontally placed solar collector in these 156 days is approximately 75% of the estimated annual energy output. In addition, it is found that the inter-annual coefficient of variation of the global solar radiation is 4.28%, while that of diffuse radiation is 4.96%.

Keywords coefficient of variation      global solar radiation      diffuse ratio      albedo      PV energy systems     
Corresponding Authors: Muyiwa S. ADARAMOLA   
Just Accepted Date: 28 July 2016   Online First Date: 08 September 2016    Issue Date: 17 November 2016
 Cite this article:   
Muyiwa S. ADARAMOLA. Distribution and temporal variability of the solar resource at a site in south-east Norway[J]. Front. Energy, 2016, 10(4): 375-381.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-016-0426-6
http://journal.hep.com.cn/fie/EN/Y2016/V10/I4/375
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Muyiwa S. ADARAMOLA
GSR range Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
0–1 31 17 11 30 31
1–2 11 9 6 20
2–3 19 5 3 16
3–4 3 15 1 18 8
4–5 10 20 6 17 9
5–6 10 13 13 1
6–7 11 1
Tab.1  Monthly distribution of global radiation horizontal surface (kWh/(m2·d))
GSR range/(kWh· (m2·d) –1) Number of days
Spring Summer Fall Winter Total
0–1 41 79 120
1–2 9 26 11 46
2–3 24 3 16 43
3–4 19 18 8 45
4–5 30 32 62
5–6 10 27 37
6–7 12 12
Tab.2  Seasonal daily distribution of global radiation horizontal surface
Fig.1  Long-term daily average global solar radiation and coefficient of variation
Fig.2  Long-term daily average diffuse solar radiation and coefficient of variation
Fig.3  Monthly average daily global solar radiation on horizontal surface
Fig.4  Monthly coefficient of variation
Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 Average SD CoV/%
Global radiation 2.74 2.58 2.55 2.46 2.51 2.55 2.62 2.63 2.34 2.48 2.55 0.109 4.26
Diffuse radiation 1.13 1.17 1.21 1.22 1.23 1.22 1.24 1.22 1.06 1.13 1.18 0.059 4.98
Albedo 0.32 0.30 0.37 0.35 0.38 0.44 0.39 0.37 0.33 0.37 0.36 0.040 10.96
Tab.3  Summary of daily annual average of global solar radiation (kWh· (m2·d)–1), diffuse radiation (kWh· (m2·d) –1) and albedo
1 Enova, Subsidies for electricity production (in Norwegian, ‘Tilskudd for el-produksjon’). <Date>2016–01–18</Date>, http://www.enova.no/finansiering/privat/enovatilskuddet-/
2 Linked in. Oslo (Norway) extends solar rebate program, <Date>2016–01–18</Date>,
3 Omran M A. Analysis of solar radiation over Egypt. Theoretical and Applied Climatology, 2000, 67(3–4): 225–240
https://doi.org/10.1007/s007040070011
4 Dahmani K, Dizene R, Notton G, Paoli C, Voyant C, Nivet M L. Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model. Energy, 2014, 70(1): 374–381
https://doi.org/10.1016/j.energy.2014.04.011
5 Gueymard C A, Wilcox S M. Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data. Solar Energy, 2011, 85(5): 1068–1084
https://doi.org/10.1016/j.solener.2011.02.030
6 Wilcoz S M, Gueymard C A. Spatial and temporal variability of the solar resource in the United States. American Solar Energy Society–Proc. ASES Annual Conference, Phoenix, 2010
7 De Souza J L, Nicacio R M, Moura M A L. Global solar radiation measurements in Maceio, Brazil. Renewable Energy, 2005, 30(8): 1203–1220
https://doi.org/10.1016/j.renene.2004.09.013
8 Tomson T, Tamm G. Short-term variability of solar radiation. Solar Energy, 2006, 80(5): 600–606
https://doi.org/10.1016/j.solener.2005.03.009
9 Santabàrbara J M, Calbo J, Baldasano J M, Esteve J, Mitjà A. Month-to-month variation of global solar radiation in Catalonia (Spain). International Journal of Climatology, 1996, 16(6): 711–721
https://doi.org/10.1002/(SICI)1097-0088(199606)16:6<711::AID-JOC42>3.0.CO;2-M
10 Zhang Y L, Qin B Q, Chen W M. Analysis of 40 year records of solar radiation data in Shanghai, Nanjing and Hangzhou in Eastern China. Theoretical and Applied Climatology, 2004, 78(4): 217–227
https://doi.org/10.1007/s00704-003-0030-7
11 Hernández-Escobedo Q, Rodríguez-García E, Saldaña-Flores R, Fernández-García A, Manzano-Agugliaro F. Solar energy resource assessment in Mexican states along the Gulf of Mexico. Renewable & Sustainable Energy Reviews, 2015, 43: 216–238
https://doi.org/10.1016/j.rser.2014.10.025
12 Parding K, Olseth J A, Dagestad K F, Liepert B G. Decadal variability of clouds, solar radiation and temperature at a high-latitude coastal site in Norway. Tellus B-chemical & Physical Meteorology, 2014, 66(1): 25897
13 Grimenes A A, Thue-Hansen V. The reduction of global radiation in south-eastern Norway during the last 50 years. Theoretical and Applied Climatology, 2006, 85(1): 37–40
https://doi.org/10.1007/s00704-005-0176-6
14 Gil V, Gaertner M A, Sanchez E, Gallardo C, Hagel E, Tejeda C, de Castro M. Analysis of interannual variability of sunshine hours and precipitation over Peninsular Spain. Renewable Energy, 2015, 83(680): 680–689
https://doi.org/10.1016/j.renene.2015.05.001
Related articles from Frontiers Journals
[1] O. S. OHUNAKIN, M. S. ADARAMOLA, O. M. OYEWOLA, R. O. FAGBENLE. Correlations for estimating solar radiation using sunshine hours and temperature measurement in Osogbo, Osun State, Nigeria[J]. Front Energ, 2013, 7(2): 214-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed