Please wait a minute...

Frontiers in Energy

Front. Energy    2015, Vol. 9 Issue (1) : 106-114
Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases
Department of Energy Engineering, Sharif University of Technology, Tehran 14565114, Iran
Download: PDF(482 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The aim of this paper is to investigate the implementation of a molten carbonate fuel cell (MCFC) as a CO2 separator. By applying multi-objective optimization (MOO) using the genetic algorithm, the optimal values of operating load and the corresponding values of objective functions are obtained. Objective functions are minimization of the cost of electricity (COE) and minimization of CO2 emission rate. CO2 tax that is accounted as the pollution-related cost, transforming the environmental objective to the cost function. The results show that the MCFC stack which is fed by the syngas and gas turbine exhaust, not only reduces CO2 emission rate, but also produces electricity and reduces environmental cost of the system.

Keywords molten carbonate fuel cell (MCFC)      multi-objective optimization (MOO)      Pareto curve      genetic algorithm      CO2 separation     
Corresponding Authors: Ramin ROSHANDEL   
Just Accepted Date: 20 November 2014   Online First Date: 02 February 2015    Issue Date: 02 March 2015
 Cite this article:   
Ramin ROSHANDEL,Majid ASTANEH,Farzin GOLZAR. Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases[J]. Front. Energy, 2015, 9(1): 106-114.
E-mail this article
E-mail Alert
Articles by authors
Fig.1  MCFC system flow
H2 CO2 H2O O2 N2 CH4
Syngas composition (Vol)/% 0.361 0.209 0.422 0 0.006 0.001
Cathode composition(Vol)/% 0 0.103 0.051 0.105 0.731 0
Tab.1  MCFC input composition
Fig.2  MCFC structure
Anode reaction H 2 + CO 3 2 - H 2 O + CO 2 + 2 e -
Cathode reaction CO 2 + 1 2 O 2 + 2 e - CO 3 2 -
Overall reaction H 2 + 1 2 O 2 + CO 2 ( cathode ) H 2 O + CO 2 ( anode )
Tab.2  Main reactions of MCFC
Cost parameters Value Reference
Stack cost 4126.43 $/kW Ref. [19]
Installation cost 1141.35 $/kW Ref.[19]
Total installation cost of MCFC 5267.78 $/kW Ref.[19]
Fuel cost (Asphalt as a refinery residue) 450 $/t Ref.[20]
Plant factor 7780 h/a Ref. [19]
Plant life 25 a Ref.[19]
Inflation rate 5 %/a Ref.[19]
Tab.3  Cost parameters
Fig.3  MCFC model validation
Fig.4  Conflicting behavior of COE and emission rate with respect to operating load
Fig.5  Pareto curve of the MOO problem
w J/(A·cm-2) COE/($·(kWh) -1) ER/(t·a-1)
0.0 0.130 0.35 3985
0.1 0.128 0.33 4077
0.2 0.120 0.24 4714
0.3 0.110 0.19 5403
0.4 0.100 0.17 6030
0.5 0.096 0.15 6631
0.6 0.088 0.14 7260
0.7 0.080 0.13 7915
0.8 0.072 0.12 8532
0.9 0.063 0.12 9158
1.0 0.060 0.12 9502
Tab.4  Optimal values of the objective functions
Fig.6  Effect of MCFC stack cost on IRR and PBP
A unit Area of a discrete unit/cm2
C i Parameters related to electrodes and electrolytes
C OP , 1 Fuel cost in the first year/($?a-1)
C tot Overall cost/$
COE Cost of electricity/ ($? (kWh)-1)
COE RT Cost of electricity including carbon dioxide tax/ ($· (kWh)-1)
CT Carbon dioxide tax/ ($·t-1)
E Theoretically achievable maximum reversible potential/V
E ο Standard cell potential/V
E pry Electric energy produced per year/ (kWh?a-1)
ER Emission rate
F Faraday’s constant (96487 C equiv.-1)
F i Molar ?ow rate of component i/ (mol·h-1)
F i ( x ) Objective function
G pr , 1 Fuel price in the first year/ ($· (kWh)-1)
Δ G The Gibbs free energy change/ (J·mol-1)
Δ H Enthalpy/ (kJ·kmol-1)
i Current/A
I 1 Total investment cost in the first year/$
Iin Specific investment cost of the installation for the MCFC/ ($?kW-1)
I inf ? Inflation rate/ (%·a-1)
I si Specific cost of a stack for the MCFC/ ($·kW-1)
j Current density/ (A·m-2)
K P Equilibrium constant
m ˙ CO 2 ,sep Separated carbon dioxide flow/ (t·h-2)
n Year
P p Plant power/kW
P F Plant factor/ (h·a-1)
R Resistance/ (?· m-2)
Ran Irreversible losses at anode/ (?·m-2)
Rca Irreversible losses at cathode/ (?·m-2)
R ir Internal cell resistance/ (?·m-2)
R tot The sum of irreversibility occurred at anode, cathode and electrode/ (?·m-2)
RTtot,1 Total reduced carbon dioxide tax in the first year/($·a-1)
T Temperature/C
V Cell voltage/V
w Weight factor
X Conversion degree
Greek letter
η Voltage loss/V
η elec Electrical efficiency
an Anode
ca Cathode
CO Carbon monoxide
CO2 Carbon dioxide
e Electric
elec Electrical
H2 Hydrogen
H2O Water vapor
i Species
i, an Species at anode
i, ca Species at cathode
in Installation
inf Inflation
ir Internal resistance
ne Nernst
out Outlet
OP Operation
p Plant
pr Price
pry Produced per year
RT Reduced CO2 tax
si Stack investment cost
tot Total
0 Standard
max Maximum
trans Transformed
GHG Greenhouse gases
IRR Internal rate of return
kWh Kilo-Watt-hour
MCFC Molten carbonate fuel cell
MOO Multi-objective optimization
PBP Payback period
Tab.5  Notations
1 Caprile L, Passalacqua B, Torazza A. Carbon capture: Energy wasting technologies or the MCFCs challenge? International Journal of Hydrogen Energy, 2011, 36(16): 10269–10277
2 Desideri U. MCFC as potential concentrators in distributed generation systems: technical problems and challenges. Workshop in Fuel Cells in the Carbon Cycle,Napoli, Italy, 2010
3 Desideri U, Proietti S, Sdringola P, Cinti G, Curbis F. MCFC-based CO2 capture system for small scale CHP plants. International Journal of Hydrogen Energy, 2012, 37(24): 19295–19303
4 Jansen D, Oudhuis A B J, van Veen H M. CO2 reduction potential of future coal gasification based power generation technologies. Energy Conversion and Management, 1992, 33(5–8): 365–372
5 Jansen D, van der Laag P C, Oudhuis A B J, Ribberink J S. Prospects for advanced coal-fuelled fuel cell power plants. Journal of Power Sources, 1994, 49(1–3): 151–165
6 Oh K S, Kim T S. Performance analysis on various system layouts for the combination of an ambient pressure molten carbonate fuel cell and a gas turbine. Journal of Power Sources, 2006, 158(1): 455–463
7 Desideri U, Proietti S, Cinti G, Sdringola P, Rossi C. Analysis of pollutant emissions from cogeneration and district heating systems aimed to a feasibility study of MCFC technology for carbon dioxide separation asretro?tting of existing plants. International Journal of Greenhouse Gas Control, 2011, 5(6): 1663–1673
8 Campanari S. Carbon dioxide separation from high temperature fuel cell power plants. Journal of Power Sources, 2002, 112(1): 273– 289
9 Lusardi M, Bosio B, Arato E. An example of innovative application in fuel cell system development: CO2 segregation using molten carbonate fuel cells. Journal of Power Sources, 2004, 131(1–2): 351–360
10 Discepoli G, Cinti G, Desideri U, Penchini D, Proietti S. Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment. International Journal of Greenhouse Gas Control, 2012, 9: 372–384
11 Milewski J, Lewandowski J. Separating CO2 from flue gases using a molten carbonate fuel cell. IERI Procedia, 2012, 1: 232–237
12 Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 2004, 26(6): 369–395
13 U.S. Energy Information Administration. U.S. sulfur content (weighted average) of crude oil input to refineries. 2012–<month>03</month>–<day>23</day>,
14 Farina L, Bressan L. Solving the heavy fuel oil problem. Heat Engine, 1998, 62: 24–28
15 Greppi P, Bosio B, Arato E. Feasibility of the integration of a molten carbonate fuel-cell system and an integrated gasi?cation combined cycle. International Journal of Hydrogen Energy, 2009, 34(20): 8664–8669
16 Spallina V, Romano M C, Campanari S, Lozza G. Application of MCFC in coal gasification plants for high efficiency CO2 capture. Journal of Engineering for Gas Turbines and Power, 2012, 134(1): 011701
17 Baranak M, Atakul H. A basic model for analysis of molten carbonate fuel cell behaviour. Journal of Power Sources, 2007, 172(2): 831–839
18 Morita H, Komoda M, Mugikura Y, Izaki Y, Watanabe T, Masuda Y, Matsuyama T. Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. Journal of Power Sources, 2002, 112(2): 509–518
19 Song S A, Han J, Yoon S P, Nam S W, Oh I H, Choi D K. Economic feasibility study for Molten Carbonate Fuel Cells fed with biogas. Journal of Electrochemical Science and Technology, 2010, 1(2): 102–111
20 Argus Media. Argus Asphalt Report Issue 14–31. 2014–<month>08</month>–<day>01</day>,
21 Carbon Tax Center (CTC). Where carbon is taxed? 2014–<month>10</month>–<day>31</day>,
22 Milewski J, Wolowicz M, Miller A, Bernat R. A reduced order model of molten carbonate fuel cell: a proposal. International Journal of Hydrogen Energy, 2013, 38(26): 11565–11575
23 International Energy Agency. Cost and performance of carbon dioxide capture from power generation. 2011,
Related articles from Frontiers Journals
[1] Saeed VAFAEI,Alireza REZVANI,Majid GANDOMKAR,Maziar IZADBAKHSH. Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances[J]. Front. Energy, 2015, 9(3): 322-334.
[2] Chang CHEN,Danmei XIE,Yangheng XIONG,Hengliang ZHANG. Optimization of turbine cold-end system based on BP neural network and genetic algorithm[J]. Front. Energy, 2014, 8(4): 459-463.
[3] Mimoun YOUNES,Khodja FOUAD,Belabbes BAGDAD. A new technique for solving the multi-objective optimization problem using hybrid approach[J]. Front. Energy, 2014, 8(4): 490-503.
[4] Sunil DHINGRA, Gian BHUSHAN, Kashyap Kumar DUBEY. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm[J]. Front Energ, 2013, 7(4): 495-505.
[5] Trina SOM, Niladri CHAKRABORTY. Economic analysis of a hybrid solar-fuel cell power delivery system using tuned genetic algorithm[J]. Front Energ, 2012, 6(1): 12-20.
[6] Y. G. LI, P. PILIDIS, . Nonlinear design-point performance adaptation approaches and their comparisons for gas turbine applications[J]. Front. Energy, 2009, 3(4): 446-455.
[7] SHU Xinwei, GU Chuangang, XIAO Jun, GAO Chuang. Centrifugal compressor blade optimization based on uniform design and genetic algorithms[J]. Front. Energy, 2008, 2(4): 453-456.
[8] ZHAO Honglei, WANG Songtao, HAN Wanjin, FENG Guotai. Aerodynamic design by jointly applying S2 flow surface calculation and modern optimization methods on multistage axial turbine[J]. Front. Energy, 2008, 2(1): 93-98.
[9] HUANG Haozhong, SU Wanhua. Application of micro-genetic algorithm for calibration of kinetic parameters in HCCI engine combustion model[J]. Front. Energy, 2008, 2(1): 86-92.
Full text