Please wait a minute...

Frontiers in Energy

Front Energ    2013, Vol. 7 Issue (4) : 495-505     https://doi.org/10.1007/s11708-013-0267-5
RESEARCH ARTICLE |
Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm
Sunil DHINGRA1(), Gian BHUSHAN2, Kashyap Kumar DUBEY3
1. University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra 136119, India; 2. National Institute of Technology, Kurukshetra 136119, India; 3. University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak 124001, India
Download: PDF(199 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper described the production of karanja biodiesel using response surface methodology (RSM) and genetic algorithm (GA). The optimum combination of reaction variables were analyzed for maximizing the biodiesel yield. The yield obtained by the RSM was 65% whereas the predicted value was 70%. The mathematical regression model proposed from the RSM was coupled with the GA. By using this technique, 90% of the yield was obtained at a molar ratio of 38, a reaction time of 8 hours, a reaction temperature of 40 oC, a catalyst concentration of 2% oil, and a mixing speed of 707 r/min. The yield produced was closer to the predicted value of 94.2093%. Hence, 25% of the improvement in the biodiesel yield was reported. Moreover the different properties of karanja biodiesel were found closer to the American Society for Testing & Materials (ASTM) standard of biodiesel.

Keywords optimization of karanja biodiesel      genetic algorithm (GA)      response surface methodology (RSM)      percentage improvement in the biodiesel yield      properties of biodiesel     
Corresponding Authors: DHINGRA Sunil,Email:pecdhingra@gmail.com   
Issue Date: 05 December 2013
 Cite this article:   
Sunil DHINGRA,Gian BHUSHAN,Kashyap Kumar DUBEY. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm[J]. Front Energ, 2013, 7(4): 495-505.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-013-0267-5
http://journal.hep.com.cn/fie/EN/Y2013/V7/I4/495
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sunil DHINGRA
Gian BHUSHAN
Kashyap Kumar DUBEY
S.No.VariablesConstraints
1.Molar ratio6<X1<36
2.Reaction time/h5.5<X2<11.5
3.Reaction temperature/°C35<X3<255
4.Catalyst (wt)/% concentration1.5<X4<15.5
5.Mixing speed/(r·min-1)75<X5<755
Tab.1  Constraints of process variables
(-2)(-1)(0)(+1)(+2)
Molar ratio614223038
Reaction time5.578.81011.5
Reaction temperature3590145200255
Catalyst concentration1.558.51215.5
Mixing speed75250425600775
Tab.2  Coded values of variables
Exp. No.TypeMolar ratioReaction time/hTemperature/ oCCatalystconc./ %Mixing speed/(r·min-1)Biodiesel yield/%
1Fact-1-1-1-1150
2Fact1-1-1-1-158
3Fact-11-1-1-160
4Fact11-1-1165
5Fact-1-11-1-148
6Fact1-11-1160
7Fact-111-1164
8Fact111-1-145
9Fact-1-1-11-162
10Fact1-1-11165
11Fact-11-11148
12Fact11-11-144
13Fact-1-111165
14Fact1-111-155
15Fact-1111-165
16Fact1111150
17Axial-2000050
18Axial2000055
19Axial0-200050
20Axial0200062
21Axial00-20070
22Axial0020070
23Axial000-2058
24Axial0002055
25Axial0000-258
26Axial0000270
27Center0000055
28Center0000062
29Center0000055
30Center0000060
31Center0000060
32Center0000060
Tab.3  Biodiesel yield at different combinations of coded factors
SourceSum of squaresDF a)Mean squareF valueProb.>F b)(P-value)
Mean1.074×10511.074×105
Linear126.00525.200.450.8128
2F1809.501080.951.960.1118
Quadratic415.51583.103.700.0328Suggested
Cubic147.50529.501.780.2508Aliased
Residual99.36616.56
Total1.090×105323406.69
Tab.4  Sequential model sum of squares
Sum of squaresDFMean squareF valueProb.>F(P-value)
Model1351.012067.553.010.0321Significant
X14.1714.170.190.6749
X20.1710.177.427×1030.9329
X30.00010.0000.0001.0000
X40.1710.177.427×1030.9329
X5121.501121.505.410.0401
X12141.091141.096.290.0291
X2250.97150.972.270.1600
X32139.641139.646.220.0298
X4241.76141.761.860.1998
X5213.64113.640.610.4521
X1X2132.251132.255.890.0336
X1X3121.001121.005.390.0404
X1X464.00164.002.850.1194
X1X5132.251132.255.890.0336
X2X312.25112.250.550.4755
X2X4210.251210.259.370.0108
X2 X51.0011.000.0450.8367
X3X464.00164.002.850.1194
X3X530.25130.251.350.2702
X4X542.25142.251.880.1974
Residual246.861122.44
Lack of fit203.53633.923.910.0779Not significant
Pure error43.3358.67
Cor total1597.8831
Tab.5  ANOVA for response surface quadratic model
Fig.1  Contour plot of biodiesel yield with molar ratio and reaction time (hour) (Constant values: temperature= 145oC, catalyst concentration= 8.5% by wt. of oil, mixing speed= 425 r/min)
Fig.2  Contour plot of biodiesel yield with molar ratio and reaction temperature (°C) (Constant values: reaction time= 8.5 h, catalyst concentration= 8.5% by wt. of oil, mixing speed= 425 r/min)
Fig.3  Contour plot of biodiesel yield with molar ratio and catalyst concentration (%) ( Constant values: reaction time= 8.5 h, temperature= 145oC , mixing speed= 425 r/min )
Fig.4  Contour plot of biodiesel yield with molar ratio and mixing speed (r/min) (Constant values: reaction time= 8.5 h, temperature= 145oC, catalyst concentration= 8.5% by wt. of oil)
Fig.5  Predicted biodiesel yield vs. actual yield of experimental runs under RSM
Fig.6  Two dimensional representation of residual differences between predicted and actual yield of experimental runs under RSM
Fig.7  Normal probability plot of biodiesel yield
ParameterValue
Population size5000
Crossover functionTwo point
Mutation functionUniform
Elite count1
Cross over fraction0.9
Mutation fraction0.01
No. of generations20
Tab.6  Genetic algorithm parameters
Fig.8  Stepwise procedure in genetic algorithm for optimum solution
Fig.9  Biodiesel yield optimization using genetic algorithm
Molar ratioReaction time/hTemperature/ °CCatalyst concentration/%Mixing speed/(r·min-1)Biodiesel (predicted)/%Yield actualPercentage improvement/%
Recommendation using GA38840270794.29025
Response surface methodology design29.458.990.35.06595.907065
Tab.7  Comparison of GA and RSM optimal design
PropertyKaranja oilKaranja ethyl esterASTM standards
Kinematic viscosity/cst a)27.854.371.9-6.0
Calorific value/(J·g-1)410004213339000-43000
Cetane no.564847
Density/(kg·m-3)870883850-879
Cloud point/ oC414.65-12
Pour point/ oC3.85.13-5
Flash point/ oC205126130
Specific gravity0.9250.900.85-0.94
Iodine value8610585-115
Saponification value194176185-180
Moisture content/%0.090.060.05% max
Peroxide value1.941.60-
Sulphur content/%0.1NIL15×10-6 max
Tab.8  Comparison of karanja oil, karanja ethyl ester and ASTM standards of biodiesel
1 Kabir E, Hussain D, Haque A, Kim K H. Prospects for biodiesel production from jatropha curcas: a case study of Bangladesh agriculture university farm. International Journal of Green Energy , 2009, 6(4): 381-391
doi: 10.1080/15435070903107064
2 Arya B. Performance and emissions study of biodiesel derived from non-edible oils on C.I. engines. M.Tech Dissertation. Department of Mechanical Engineering, Delhi University, Delhi, India , 2010
3 Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida Antarctica Lipase. Journal of the American Oil Chemists'. Society , 2000, 17(4): 355-360
4 Kaieda M, Samukawa T, Kondo A, Fukuda H. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalysed by various lipases in a solvent free system. Journal of Bioscience and Bioengineering , 2000, 91(1): 12-15
5 Bhattacharya S K, Reddy C S. Vegetable oils as fuels for internal combustion engines: a review. Journal of Agricultural Engineering Research , 1994, 57(3): 157-166
doi: 10.1006/jaer.1994.1015
6 Aggarwal A K, Das L M. Biodiesel development and characterisation for use as a fuel in compression ignition engine. Journal of Engineering for Gas Turbines and Power , 2000, 123(2): 440-447
doi: 10.1115/1.1364522
7 Ma F, Hanna M A. Biodiesel production: a review. Bioresource Technology , 1999, 70(1): 1-15
doi: 10.1016/S0960-8524(99)00025-5
8 Wang R, Zhou W W, Hanna M A, Zhang Y P, Bhadury P S, Wang Y, Song B A, Yang S. Biodiesel preparation, optimization, and fuel properties from non-edible feedstock, Datura stramonium L. Fuel , 2012, 91(1): 182-186
doi: 10.1016/j.fuel.2011.07.001
9 Wang J X, Chen K T, Wu J S, Wang P H, Huang S T, Chen C C. Production of biodiesel through trans esterification of soybean oil using lithium orthosilicate solid catalyst. Fuel Processing Technology , 2012, 104: 167-173
doi: 10.1016/j.fuproc.2012.05.009
10 Lakshmi C V, Viswanath K. Venkateshwar, Satyavathi B. Mixing characteristics of the oil-methanol system in the production of biodiesel using edible and non-edible oils. Fuel Processing Technology , 2011, 92(8): 1411-1417
doi: 10.1016/j.fuproc.2011.01.015
11 Srinivas Rao P, Gopal Krishna K V. Vegetable oils and their methyl esters as fuels for diesel engines. Indian Journal of Technology , 1991, 29: 121-134
12 Subramaiam K A, Singhal S K, Saxena M, Singhal S. Utilization of liquid biofuels in automotive diesel engines: an Indian perspective. Biomass and Bioenergy , 2005, 29(1): 65-72
doi: 10.1016/j.biombioe.2005.02.001
13 Georing C E, Schwab A W, Daugherty M J, Pryde E H, Heakin A J. Fuel properties of eleven vegetable oils. Transactions of the ASAE. American Society of Agricultural Engineers , 1982, 25(6): 1472-1477, 1483
14 Schlick M L, Hanna M A, Schinstock J L. Soybean and sunflower oil performance in a diesel engine. Transactions of the ASAE. American Society of Agricultural Engineers , 1988, 31(5): 1345-1349
15 Ramdhas A S, Muraleedharan C, Jayaraj S. Performance and emission evaluation of a diesel engine fuelled with methyl esters of rubber seed oil. Renewable Energy , 2005, 30(12): 1789-1800
doi: 10.1016/j.renene.2005.01.009
16 Peterson C L, Reece D L, Hammond D L, Cruz R, Thompson J. A comparison of ethyl and methyl esters of vegetable oils as diesel fuel substitute. In: Proceedings of an Alternative Energy Conference. Nashville, USA , 1992, 99-110
17 Naik M, Meher L C, Naik S N, Das L M. Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass and Bioenergy , 2008, 32(4): 354-357
doi: 10.1016/j.biombioe.2007.10.006
18 Pradhan R C, Naik S N, Bhatnagar N, Swain S K. Moisture-dependent physical properties of Karanja (Pongamia pinnata) kernel. Industrial Crops and Products , 2008, 28(2): 155-161
doi: 10.1016/j.indcrop.2008.02.006
19 Chary G H V C, Dastidar M G. Investigation of optimum conditions in coal-oil agglomeration using Taguchi experimental design. Fuel , 2012, 98: 259-264
doi: 10.1016/j.fuel.2012.03.027
20 Vinay B J, Kanya T C S. Effect of detoxification on the functional and nutritional quality of proteins of karanja seed meal. Food Chemistry , 2008, 106(1): 77-84
doi: 10.1016/j.foodchem.2007.05.048
21 Srivastava P K, Verma M.Methyl ester of karanja oil as an alternative renewable source energy. Fuel , 2008, 87(8,9): 1673-1677
22 Thiruvengadaravi K V, Nandagopal J, Baskaralingam P, Bala V S S, Sivanesan S. Acid-catalysed esterification of karanja (Pongamia pinnata) oil with high free fatty acid for biodiesel production. Fuel , 2012, 98: 1-4
doi: 10.1016/j.fuel.2012.02.047
23 Bala V S S, Thiruvengadaravi K V, Kumar P S, Premkumar M P, Kumar V V, Sankar S S, Kumar M H, Sivanesan S. Removal of free fatty acid in Pongamia Pinnata (Karanja) oil using divinylbenzene-styrene copolymer resins for biodiesel production. Biomass and Bioenergy , 2012, 37: 335-341
doi: 10.1016/j.biombioe.2011.12.032
24 Khayoon M S, Olutoye M A, Hameed B H. Utilization of crude karanja (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters. Bioresource Technology , 2012, 111: 175-179
doi: 10.1016/j.biortech.2012.01.177
25 Kamath H V, Regupathi I, Saidutta M B. Optimization of two step karanja biodiesel synthesis under microwave irradiation. Fuel Processing Technology , 2011, 92(1): 100-105
doi: 10.1016/j.fuproc.2010.09.003
26 Maheshwari N, Balaji C, Ramesh A. A nonlinear regression based multi-objective optimization of parameters based on experimental data from an IC engine fuelled with biodiesel blends. Biomass and Bioenergy , 2011, 35(5): 2171-2183
doi: 10.1016/j.biombioe.2011.02.031
27 Sahoo P K, Das L M. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel , 2009, 88(9): 1588-1594
doi: 10.1016/j.fuel.2009.02.016
28 Jena P C, Raheman H, Prasanna G V, Machavaram R. Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids. Biomass and Bioenergy , 2010, 34(8): 1108-1116
doi: 10.1016/j.biombioe.2010.02.019
Related articles from Frontiers Journals
[1] Saeed VAFAEI,Alireza REZVANI,Majid GANDOMKAR,Maziar IZADBAKHSH. Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances[J]. Front. Energy, 2015, 9(3): 322-334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed