Please wait a minute...

Frontiers in Biology

Front. Biol.    2018, Vol. 13 Issue (6) : 469-474
Widely distribution of hematological parameters in thalassemia patients with similar α-globin genotype
Bijan Keikhaei1, Pejman Salehi-Fard1, Mostafa Paridar2, Mehraneh Karimzadeh3, Razie Dehghani4, Asma Zamiri5, Vahideh Takhviji6()
1. Research Center for Thalassemia and Hemoglobinopathy, Health Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2. Deputy of Management and Resources Development, Ministry of Health and Medical Education, Tehran, Iran
3. School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4. Pediatric Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
5. School of Medicine, Gorgan University of Medical Sciences, Gorgan, Iran
6. Laboratory Hematology and Blood Banking, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
Download: PDF(229 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

BACKGROUND: Thalassemia is known as the commonest monogenic disorder with an imbalanced rate of globin chains production of adult hemoglobin. Despite the available information about the thalassemia etiology, its phenotype varies from each patient to another. This study aimed to evaluate the hematological parameters of patients with the same -α3.7 homozygote and heterozygote genotypes to amend screening programs.

METHODS: In this observational study, we evaluated 1301 thalassemia suspected patients who referred to the Thalassemia and Hemoglobinopathy Research Center of Ahvaz University of Medical Sciences, Khuzestan, Iran during 2014-2016. According to the genotyping studies, patients divided into 2 groups with -α3.7/aa (n = 646) and -α3.7/-α3.7 (n = 181) genotypes. Thereafter, distribution of hematological parameters evaluated in both groups.

RESULTS: The mean age in heterozygous and homozygous groups was 25.7±4.5 and 26±4.4 years old, respectively. The degree of anemia was considerably varied in patients with the same genotype. MCV, RBC and MCH showed a wide distribution in patients.

CONCLUSION: The findings presented here suggest that other molecular mechanisms along with α-globin gene mutations could be involved in determining the phenotypes of alpha thalassemia patients.

Keywords hematological parameters      α-globin genotype      alpha thalassemia     
Corresponding Authors: Vahideh Takhviji   
Online First Date: 23 October 2018    Issue Date: 30 November 2018
 Cite this article:   
Bijan Keikhaei,Pejman Salehi-Fard,Mostafa Paridar, et al. Widely distribution of hematological parameters in thalassemia patients with similar α-globin genotype[J]. Front. Biol., 2018, 13(6): 469-474.
E-mail this article
E-mail Alert
Articles by authors
Bijan Keikhaei
Pejman Salehi-Fard
Mostafa Paridar
Mehraneh Karimzadeh
Razie Dehghani
Asma Zamiri
Vahideh Takhviji
Alpha Mutation Age Hemoglobin MCV MCH RBC HbA2 HbF
-a3.7 Heterozygote
N = 646
25.73±4.58 13.16±1.49
-a3.7 Homozygote
N = 181
26.9±4.44 12.31±1.51
Tab.1  Hematological parameters
Fig.1  Hematological parameters distribution in patients harboring-a3.7/aa genotype.
Fig.2  Hematological parameters distribution in patients harboring -a3.7/-a3.7 genotype.
1 Alibakhshi R, Mehrabi M, Omidniakan L, Shafieenia S (2015). The spectrum of a-thalassemia mutations in Kermanshah Province, West Iran. Hemoglobin, 39(6): 403–406 pmid: 26287614
2 Cao A, Kan Y W (2013). The prevention of thalassemia. Cold Spring Harb Perspect Med, 3(2): a011775 pmid: 23378598
3 Coelho A, Picanço I, Seuanes F, Seixas M T, Faustino P (2010). Novel large deletions in the human a-globin gene cluster: Clarifying the HS-40 long-range regulatory role in the native chromosome environment. Blood Cells Mol Dis, 45(2): 147–153 pmid: 20580289
4 De Gobbi M, Viprakasit V, Hughes J R, Fisher C, Buckle V J, Ayyub H, Gibbons R J, Vernimmen D, Yoshinaga Y, de Jong P, Cheng J F, Rubin E M, Wood W G, Bowden D, Higgs D R (2006). A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science, 312(5777): 1215–1217 pmid: 16728641
5 Dehbozorgian J, Moghadam M, Daryanoush S, Haghpanah S, Imani Fard J, Aramesh A, Shahsavani A, Karimi M (2015). Distribution of alpha-thalassemia mutations in Iranian population. Hematology, 20(6): 359–362 pmid: 25553732
6 Derakhshan S M, Khaniani M S, Afkhami F, PourFeizi A H (2016). Molecular study of deletional and nondeletional mutations on the a-globin locus in the Azeri population of Northwestern Iran. Hemoglobin, 40(5): 319–322 pmid: 27690152
7 Eftekhari H, Tamaddoni A, Mahmoudi Nesheli H, Vakili M, Sedaghat S, Banihashemi A, Azizi M, Youssefi Kamangar R, Akhavan-Niaki H (2017). A comprehensive molecular investigation of a-thalassemia in an Iranian cohort from different provinces of North Iran. Hemoglobin, 41(1): 32–37 pmid: 28385057
8 Farashi S, Harteveld C L (2017). Molecular basis of a-thalassemia. Blood Cells Mol Dis
pmid: 29032940
9 Galanello R, Cao A (2011). Gene test review. Alpha-thalassemia. Genet Med, 13(2): 83–88 pmid: 21381239
10 Harteveld C L, Higgs D R (2010). a-thalassaemia. Orphanet J Rare Dis, 5(1): 13 pmid: 20507641
11 HiggsD R, Gibbons R J ( 2010). The molecular basis of -thalassemia: a model for understanding human molecular genetics. Hematology/Oncology Clinics, 24(6): 1033–1054
12 Higgs D R, Wood W G (2008). Long-range regulation of a globin gene expression during erythropoiesis. Curr Opin Hematol, 15(3): 176–183 pmid: 18391781
13 Ilan L, Osman F, Namer L S, Eliahu E, Cohen-Chalamish S, Ben-Asouli Y, Banai Y, Kaempfer R (2017). PKR activation and eIF2a phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Res, 27(5): 688–704 pmid: 28374749
14 Kanavakis E, Papassotiriou I, Karagiorga M, Vrettou C, Metaxotou-Mavrommati A, Stamoulakatou A, Kattamis C, Traeger-Synodinos J (2000). Phenotypic and molecular diversity of haemoglobin H disease: a Greek experience. Br J Haematol, 111(3): 915–923
pmid: 11122156
15 Keikhaei B, Slehi-Fard P, Shariati G, Khosravi A (2018). Genetics of Iranian Alpha-Thalassemia Patients: A Comprehensive Original Study. Biochem Genet, pmid: 29627922
16 Liu Y T, Old J M, Miles K, Fisher C A, Weatherall D J, Clegg J B (2000). Rapid detection of alpha-thalassaemia deletions and alpha-globin gene triplication by multiplex polymerase chain reactions. Br J Haematol, 108(2): 295–299 pmid: 10691858
17 Musallam K M ( 2013). Non-transfusion-dependent thalassemias. Haematologica, 98(6): 833–844
18 Onay H, Aykut A, Karaca E, Durmaz A, Solmaz A E, Çoğulu Ö, Aydınok Y, Vergin C, Özkınay F (2015). Molecular spectrum of a-globin gene mutations in the Aegean region of Turkey: first observation of three a-globin gene mutations in the Turkish population. Int J Hematol, 102(1): 1–6 pmid: 25939702
19 Ribeiro D,Sonati M ( 2008). Regulation of human alpha-globin gene expression and alpha-thalassemia. Genet Mol Res, 7(4):1045–53
20 Sanger F, Nicklen S, Coulson A R (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 74(12): 5463–5467 pmid: 271968
21 Satta S, Paglietti M E, Sollaino M C, Barella S, Moi P, Desogus M F, Demartis F R, Manunza L, Origa R (2017). Changes in HbA2 and HbF in alpha thalassemia carriers with KLF1 mutation. Blood Cells Mol Dis, 64: 30–32 pmid: 28342932
22 Singer S T (2009). Variable clinical phenotypes of a-thalassemia syndromes. Sci World J, 9: 615–625 pmid: 19618088
23 Sollaino M C, Paglietti M E, Loi D, Congiu R, Podda R, Galanello R (2010). Homozygous deletion of the major alpha-globin regulatory element (MCS-R2) responsible for a severe case of hemoglobin H disease. Blood, 116(12): 2193–2194 pmid: 20864588
24 Surapolchai P, Chuansumrit A, Sirachainan N, Kadegasem P, Leung K C, So C C (2017). A molecular study on the role of alpha-hemoglobin-stabilizing protein in hemoglobin H disease. Ann Hematol, 96(6): 1005–1014 pmid: 28337528
25 Tamaddoni A, Hadavi V, Nejad N H, Khosh-Ain A, Siami R, Aghai-Meibodi J, Almadani N, Oberkanins C, Law H Y, Najmabadi H (2009). a-Thalassemia mutation analyses in Mazandaran province, North Iran. Hemoglobin, 33(2): 115–123 pmid: 19373587
26 Valaei A, Karimipoor M, Kordafshari A, Zeinali S (2018). Molecular Basis of a-Thalassemia in Iran. Iran Biomed J, 22(1): 6–14
pmid: 29115104
27 Vernimmen D, Marques-Kranc F, Sharpe J A, Sloane-Stanley J A, Wood W G, Wallace H A, Smith A J, Higgs D R (2009). Chromosome looping at the human a-globin locus is mediated via the major upstream regulatory element (HS-40). Blood, 114(19): 4253–4260 pmid: 19696202
28 Viprakasit V, Kidd A M, Ayyub H, Horsley S, Hughes J, Higgs D R (2003). De novo deletion within the telomeric region flanking the human a globin locus as a cause of a thalassaemia. Br J Haematol, 120(5): 867–875 pmid: 12614224
29 Wajcman H, Traeger-Synodinos J, Papassotiriou I, Giordano P C, Harteveld C L, Baudin-Creuza V, Old J (2008). Unstable and thalassemic a chain hemoglobin variants: a cause of Hb H disease and thalassemia intermedia. Hemoglobin, 32(4): 327–349 pmid: 18654884
30 Wu M Y, He Y, Yan J M, Li D Z (2017). A novel selective deletion of the major a-globin regulatory element (MCS-R2) causing a-thalassaemia. Br J Haematol, 176(6): 984–986 pmid: 26915575
31 Yu L H, Liu D, Cai R, Shang X, Zhang X H, Ma X X, Yan S H, Fang P, Zheng C G, Wei X F, Liu Y H, Zhou T B, Xu X M (2015). Changes in hematological parameters in a-thalassemia individuals co-inherited with erythroid Krüppel-like factor mutations. Clin Genet, 88(1): 56–61 pmid: 24930900
Full text