Please wait a minute...

Frontiers in Biology

Front. Biol.    2018, Vol. 13 Issue (6) : 406-417     https://doi.org/10.1007/s11515-018-1521-3
REVIEW |
Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature
Karimeh Haghani1, Pouyan Asadi2, Gholamreza Taheripak3, Ali Noori-Zadeh4, Shahram Darabi5, Salar Bakhtiyari1()
1. Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
2. Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
3. Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
4. Department of Clinical Biochemistry, Faculty of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran
5. Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
Download: PDF(229 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Diabetes mellitus (DM) is one of the most prevalent chronic diseases, and its prevalence continues to increase globally. The impact of mitochondrial dysfunction and lipid metabolism on diabetes mellitus and insulin resistance (IR) has been implicated in several previous reports; however, the results of studies are confusing despite four decades of study.

METHODS/RESULTS: This review has evaluated updated understanding of the role of mitochondrial dysfunction and lipid metabolism on type 2 diabetes, and found that mitochondrial dysfunction and lipid metabolism disorder induce the dysregulation of liver and pancreatic beta cells, insulin resistance, and type 2 diabetes.

CONCLUSION: Mitochondrial dysfunction and lipid metabolism induce metabolic dysregulation and finally increasing the possibility of diabetes.

Keywords Insulin resistance      Type 2 diabetes      Mitochondrial dysfunction      Lipid metabolism     
Corresponding Authors: Salar Bakhtiyari   
Online First Date: 26 October 2018    Issue Date: 30 November 2018
 Cite this article:   
Karimeh Haghani,Pouyan Asadi,Gholamreza Taheripak, et al. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-018-1521-3
http://journal.hep.com.cn/fib/EN/Y2018/V13/I6/406
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Karimeh Haghani
Pouyan Asadi
Gholamreza Taheripak
Ali Noori-Zadeh
Shahram Darabi
Salar Bakhtiyari
Fig.1  Diabetes mellitus pathogenesis. This disease has many pathogenesis aspects. In this literature, the association of mitochondrial dysfunction and lipid metabolism with diabetes have been reviewed.
1 Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Ortega A, Mauricio M D, Vila J M, Valles S L (2015). Astrocytes protect neurons from Aβ1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-g and SIRT-1. Int J Med Sci, 12(1): 48–56
https://doi.org/10.7150/ijms.10035 pmid: 25552918
2 Antos-Krzeminska N, Jarmuszkiewicz W (2014). External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria. Protist, 165(5): 580–593
https://doi.org/10.1016/j.protis.2014.07.002 pmid: 25113830
3 Bakar M H A, Sarmidi M R, Kai C K, Huri H Z, Yaakob H (2014). Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-kB pathways. Int J Mol Sci, 15(12): 22227–22257
https://doi.org/10.3390/ijms151222227 pmid: 25474091
4 Bakhtiyari S, Meshkani R, Taghikhani M, Larijani B, Adeli K (2010). Protein tyrosine phosphatase-1B (PTP-1B) knockdown improves palmitate-induced insulin resistance in C2C12 skeletal muscle cells. Lipids, 45(3): 237–244
https://doi.org/10.1007/s11745-010-3394-3 pmid: 20177806
5 Bandyopadhyay G K, Lu M, Avolio E, Siddiqui J A, Gayen J R, Wollam J, Vu C U, Chi N W, O’Connor D T, Mahata S K (2015). Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance. Diabetes, 64(1): 104–116
https://doi.org/10.2337/db13-1747 pmid: 25048197
6 Bettaieb A, Matsuo K, Matsuo I, Wang S, Melhem R, Koromilas A E, Haj F G (2012). Protein tyrosine phosphatase 1B deficiency potentiates PERK/eIF2α signaling in brown adipocytes. PLoS One, 7(4): e34412
https://doi.org/10.1371/journal.pone.0034412 pmid: 22509299
7 Bose S K, Kim H, Meyer K, Wolins N, Davidson N O, Ray R (2014). Forkhead box transcription factor regulation and lipid accumulation by hepatitis C virus. J Virol, 88(8): 4195–4203
https://doi.org/10.1128/JVI.03327-13 pmid: 24478438
8 Camões F, Islinger M, Guimarães S C, Kilaru S, Schuster M, Godinho L F, Steinberg G, Schrader M (2015). New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and-dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta, 1853(1): 111–125
https://doi.org/10.1016/j.bbamcr.2014.10.005 pmid: 25307522
9 Carey A L, Vorlander C, Reddy-Luthmoodoo M, Natoli A K, Formosa M F, Bertovic D A, Anderson M J, Duffy S J, Kingwell B A (2014). Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS One, 9(3): e91997
https://doi.org/10.1371/journal.pone.0091997 pmid: 24642703
10 Carey B W, Finley L W, Cross J R, Allis C D, Thompson C B (2015). Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, 518(7539): 413–416
https://doi.org/10.1038/nature13981 pmid: 25487152
11 Chen L, Liu T, Zhang S, Zhou J, Wang Y, Di W (2014). Succinate dehydrogenase subunit B inhibits the AMPK-HIF-1α pathway in human ovarian cancer in vitro. J Ovarian Res, 7(1): 115
pmid: 25491408
12 Chinnery P (2014). Mitochondrial disorders overview. Synonyms: mitochondrial encephalomyopathies, mitochondrial myopathies, oxidative phosphorylation disorders, respiratory chain disorders. GeneReviews Seattle: University of Washington
13 Chinnery P F, Elliott H R, Hudson G, Samuels D C, Relton C L (2012). Epigenetics, epidemiology and mitochondrial DNA diseases. Int J Epidemiol, 41(1): 177–187
https://doi.org/10.1093/ije/dyr232 pmid: 22287136
14 Cook J R, Matsumoto M, Banks A S, Kitamura T, Tsuchiya K, Accili D (2015). A Mutant Allele Encoding DNA-Binding-Deficient Foxo1 Differentially Regulates Hepatic Glucose and Lipid Metabolism. Diabetes, 64(6): 1951–1965
15 Czibik G, Steeples V, Yavari A, Ashrafian H (2014). Citric acid cycle intermediates in cardioprotection. Circ Cardiovasc Genet, 7(5): 711–719
15 Dadke S S, Li H C, Kusari A B, Begum N, Kusari J (2000). Elevated expression and activity of protein-tyrosine phosphatase 1B in skeletal muscle of insulin-resistant type II diabetic Goto-Kakizaki rats. Biochem Biophys Res Commun, 274(3): 583–589
https://doi.org/10.1006/bbrc.2000.3188 pmid: 10924321
16 de Luca C, Olefsky J M (2008). Inflammation and insulin resistance. FEBS Lett, 582(1): 97–105
https://doi.org/10.1016/j.febslet.2007.11.057 pmid: 18053812
17 Delibegovic M, Bence K K, Mody N, Hong E G, Ko H J, Kim J K, Kahn B B, Neel B G (2007). Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol, 27(21): 7727–7734
https://doi.org/10.1128/MCB.00959-07 pmid: 17724080
18 Demine S, Reddy N, Renard P, Raes M, Arnould T (2014). Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites, 4(3): 831–878
https://doi.org/10.3390/metabo4030831 pmid: 25257998
19 Desai G S, Mathews S T (2014). Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance. World J Diabetes, 5(6): 730–738
https://doi.org/10.4239/wjd.v5.i6.730 pmid: 25512775
20 Ding H, Zhang Y, Xu C, Hou D, Li J, Zhang Y, Peng W, Zen K, Zhang C Y, Jiang X (2014). Norathyriol reverses obesity- and high-fat-diet-induced insulin resistance in mice through inhibition of PTP1B. Diabetologia, 57(10): 2145–2154
https://doi.org/10.1007/s00125-014-3315-8 pmid: 24985145
21 Dudley K J, Sloboda D M, Connor K L, Beltrand J, Vickers M H (2011). Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation. PLoS One, 6(7): e21662
https://doi.org/10.1371/journal.pone.0021662 pmid: 21779332
22 Egger G, Liang G, Aparicio A, Jones P A (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990): 457–463
https://doi.org/10.1038/nature02625 pmid: 15164071
23 Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy A L, Normandin D, Cheng A, Himms-Hagen J, Chan C C, Ramachandran C, Gresser M J, Tremblay M L, Kennedy B P (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283(5407): 1544–1548
https://doi.org/10.1126/science.283.5407.1544 pmid: 10066179
24 Fatland B L, Ke J, Anderson M D, Mentzen W I, Cui L W, Allred C C, Johnston J L, Nikolau B J, Wurtele E S (2002). Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol, 130(2): 740–756
https://doi.org/10.1104/pp.008110 pmid: 12376641
25 Ferber E C, Peck B, Delpuech O, Bell G P, East P, Schulze A (2012). FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ, 19(6): 968–979
https://doi.org/10.1038/cdd.2011.179 pmid: 22139133
26 Ferla M P, Thrash J C, Giovannoni S J, Patrick W M (2013). New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One, 8(12): e83383
https://doi.org/10.1371/journal.pone.0083383 pmid: 24349502
27 Forkink M, Manjeri G R, Liemburg-Apers D C, Nibbeling E, Blanchard M, Wojtala A, Smeitink J A, Wieckowski M R, Willems P H, Koopman W J (2014). Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. Biochim Biophys Acta, 1837(8): 1247–1256
https://doi.org/10.1016/j.bbabio.2014.04.008 pmid: 24769419
28 Freund-Michel V, Khoyrattee N, Savineau J P, Muller B, Guibert C (2014). Mitochondria: roles in pulmonary hypertension. Int J Biochem Cell Biol, 55: 93–97
https://doi.org/10.1016/j.biocel.2014.08.012 pmid: 25149415
29 Freund-Michel V, Khoyrattee N, Savineau J P, Muller B, Guibert C (2014). Mitochondria: roles in pulmonary hypertension. Int J Biochem Cell Biol, 55: 93–97
https://doi.org/10.1016/j.biocel.2014.08.012 pmid: 25149415
30 Frohman M A (2015). Role of mitochondrial lipids in guiding fission and fusion. J Mol Med (Berl), 93(3): 263–269
https://doi.org/10.1007/s00109-014-1237-z pmid: 25471483
31 Fukao T, Mitchell G, Sass J O, Hori T, Orii K, Aoyama Y (2014). Ketone body metabolism and its defects. J Inherit Metab Dis, 37(4): 541–551
https://doi.org/10.1007/s10545-014-9704-9 pmid: 24706027
32 Garcia de la Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio J S, Bru R, Olmos E (2015). New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytol, 205(1): 216–239
https://doi.org/10.1111/nph.12997 pmid: 25187269
33 Ge Z J, Luo S M, Lin F, Liang Q X, Huang L, Wei Y C, Hou Y, Han Z M, Schatten H, Sun Q Y (2014). DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect, 122(2): 159–164
https://doi.org/10.1289/ehp.1307047 pmid: 24316659
34 Genova M L, Lenaz G (2014). Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta, 1837(4): 427–443
https://doi.org/10.1016/j.bbabio.2013.11.002 pmid: 24246637
35 Gogga P, Karbowska J, Meissner W, Kochan Z (2011). Role of leptin in the regulation of lipid and carbohydrate metabolism. Postepy Hig Med Dosw (Online), 65: 255–62
36 Gogoi B, Chatterjee P, Mukherjee S, Buragohain A K, Bhattacharya S, Dasgupta S (2014). A polyphenol rescues lipid induced insulin resistance in skeletal muscle cells and adipocytes. Biochem Biophys Res Commun, 452(3): 382–388
https://doi.org/10.1016/j.bbrc.2014.08.079 pmid: 25157809
37 Goldstein B J (1993). Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor, 3(1): 1–15
pmid: 8394171
38 Graham E J, Adler F R (2014). Long-term models of oxidative stress and mitochondrial damage in insulin resistance progression. J Theor Biol, 340: 238–250
https://doi.org/10.1016/j.jtbi.2013.09.028 pmid: 24076453
39 Gu P, Liu W, Shao J, Lu B, Wang Y, Jiang W, Jiang S (2010). Protein tyrosine phosphatase 1B gene polymorphisms and obesity-related hypertension: a case-control study in Chinese population. Shengwu Yixue Gongcheng Yu Linchuang, 14(5): 442–446
40 Haj F G, Zabolotny J M, Kim Y B, Kahn B B, Neel B G (2005). Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem, 280(15): 15038–15046
https://doi.org/10.1074/jbc.M413240200 pmid: 15699041
41 Harijith A, Ebenezer D L, Natarajan V (2014). Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol, 5: 352
pmid: 25324778
42 Hasan N M, Longacre M J, Stoker S W, Kendrick M A, MacDonald M J (2015). Mitochondrial malic enzyme 3 is important for insulin secretion in pancreatic β-cells. Mol Endocrinol, 29(3): 396–410
pmid: 25594249
43 Hiltunen J K, Autio K J, Schonauer M S, Kursu V A, Dieckmann C L, Kastaniotis A J (2010). Mitochondrial fatty acid synthesis and respiration. Biochim Biophys Acta, 1797(6-7): 1195–1202
https://doi.org/10.1016/j.bbabio.2010.03.006 pmid: 20226757
44 Hynes M J, Murray S L (2010). ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell, 9(7): 1039–1048
https://doi.org/10.1128/EC.00080-10 pmid: 20495057
45 Ishii M, Maeda A, Tani S, Akagawa M (2015). Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Arch Biochem Biophys, 566: 26–35
https://doi.org/10.1016/j.abb.2014.12.009 pmid: 25527164
46 Ishii M, Maeda A, Tani S, Akagawa M (2015). Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Arch Biochem Biophys, 566: 26–35
https://doi.org/10.1016/j.abb.2014.12.009 pmid: 25527164
47 Jacobsen S C, Brøns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, Hall E, Calvanese V, Nilsson E, Jørgensen S W, Mandrup S, Ling C, Fernandez A F, Fraga M F, Poulsen P, Vaag A (2012). Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia, 55(12): 3341–3349
https://doi.org/10.1007/s00125-012-2717-8 pmid: 22961225
48 James A M, Murphy M P (2002). How mitochondrial damage affects cell function. J Biomed Sci, 9(6 Pt 1): 475–487
https://doi.org/10.1007/BF02254975 pmid: 12372986
49 Javor E D, Cochran E K, Musso C, Young J R, Depaoli A M, Gorden P (2005). Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Diabetes, 54(7): 1994–2002
https://doi.org/10.2337/diabetes.54.7.1994 pmid: 15983199
50 Johnson T O, Ermolieff J, Jirousek M R (2002). Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov, 1(9): 696–709
https://doi.org/10.1038/nrd895 pmid: 12209150
51 Ka S O, Song M Y, Bae E J, Park B H (2015). Myeloid SIRT1 regulates macrophage infiltration and insulin sensitivity in mice fed a high-fat diet. J Endocrinol, 224(2): 109–118
https://doi.org/10.1530/JOE-14-0527 pmid: 25349250
52 Kadota Y, Kazama S, Bajotto G, Kitaura Y, Shimomura Y (2012). Clofibrate-induced reduction of plasma branched-chain amino acid concentrations impairs glucose tolerance in rats. JPEN J Parenter Enteral Nutr, 36(3): 337–343
https://doi.org/10.1177/0148607111414578 pmid: 22038205
53 Kang L, Dai C, Lustig M E, Bonner J S, Mayes W H, Mokshagundam S, James F D, Thompson C S, Lin C T, Perry C G, Anderson E J, Neufer P D, Wasserman D H, Powers A C (2014). Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice. Diabetes, 63(11): 3699–3710
https://doi.org/10.2337/db13-1845 pmid: 24947366
54 Kathirvel E, Morgan K, French S W, Morgan T R (2013). Acetyl-L-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease. Nutr Res, 33(11): 932–941
https://doi.org/10.1016/j.nutres.2013.08.001 pmid: 24176233
55 Kathirvel E, Morgan K, French S W, Morgan T R (2013). Acetyl-L-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease. Nutr Res, 33(11): 932–941
https://doi.org/10.1016/j.nutres.2013.08.001 pmid: 24176233
56 Khalyfa A, Carreras A, Hakim F, Cunningham J M, Wang Y, Gozal D (2013). Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int J Obes (Lond), 37(11): 1481–1489
https://doi.org/10.1038/ijo.2013.12 pmid: 23399773
57 Kim J A, Wei Y, Sowers J R (2008). Role of mitochondrial dysfunction in insulin resistance. Circ Res, 102(4): 401–414
https://doi.org/10.1161/CIRCRESAHA.107.165472 pmid: 18309108
58 Klaman L D, Boss O, Peroni O D, Kim J K, Martino J L, Zabolotny J M, Moghal N, Lubkin M, Kim Y B, Sharpe A H, Stricker-Krongrad A, Shulman G I, Neel B G, Kahn B B (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol, 20(15): 5479–5489
https://doi.org/10.1128/MCB.20.15.5479-5489.2000 pmid: 10891488
59 Koob S, Reichert A S (2014). Novel intracellular functions of apolipoproteins: the ApoO protein family as constituents of the Mitofilin/MINOS complex determines cristae morphology in mitochondria. Biol Chem, 395(3): 285–296
https://doi.org/10.1515/hsz-2013-0274 pmid: 24391192
60 Kowalski G M, Kloehn J, Burch M L, Selathurai A, Hamley S, Bayol S A, Lamon S, Watt M J, Lee-Young R S, McConville M J, Bruce C R (2015). Overexpression of sphingosine kinase 1 in liver reduces triglyceride content in mice fed a low but not high-fat diet. Biochim Biophys Acta, 1851(2): 210–219
https://doi.org/10.1016/j.bbalip.2014.12.002 pmid: 25490466
61 Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J (2015). Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng, 28: 28–42
https://doi.org/10.1016/j.ymben.2014.11.009 pmid: 25485951
62 Kühn K, Yin G, Duncan O, Law S R, Kubiszewski-Jakubiak S, Kaur P, Meyer E, Wang Y, Small C C, Giraud E, Narsai R, Whelan J (2015). Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. Plant Physiol, 167(1): 228–250
https://doi.org/10.1104/pp.114.249946 pmid: 25378695
63 Laafi J, Homedan C, Jacques C, Gueguen N, Schmitt C, Puy H, Reynier P, Carmen Martinez M, Malthièry Y (2014). Pro-oxidant effect of ALA is implicated in mitochondrial dysfunction of HepG2 cells. Biochimie, 106: 157–166
https://doi.org/10.1016/j.biochi.2014.08.014 pmid: 25220386
64 Lees E K, Krol E, Shearer K, Mody N, Gettys T W, Delibegovic M (2015). Effects of hepatic protein tyrosine phosphatase 1B and methionine restriction on hepatic and whole-body glucose and lipid metabolism in mice. Metabolism, 64(2): 305–314
https://doi.org/10.1016/j.metabol.2014.10.038 pmid: 25468142
65 Lian J, Si T, Nair N U, Zhao H (2014). Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng, 24: 139–149
https://doi.org/10.1016/j.ymben.2014.05.010 pmid: 24853351
66 Lian K, Du C, Liu Y, Zhu D, Yan W, Zhang H, Hong Z, Liu P, Zhang L, Pei H, Zhang J, Gao C, Xin C, Cheng H, Xiong L, Tao L (2015). Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes, 64(1): 49–59
https://doi.org/10.2337/db14-0312 pmid: 25071024
67 Liu J, Li J, Li W J, Wang C M (2013). The role of uncoupling proteins in diabetes mellitus. J Diabetes Res, 2013: 585897
https://doi.org/10.1155/2013/585897 pmid: 23841103
68 Liu W, Cao H, Ye C, Chang C, Lu M, Jing Y, Zhang D, Yao X, Duan Z, Xia H, Wang Y C, Jiang J, Liu M F, Yan J, Ying H (2014). Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nat Commun, 5(1): 5684
https://doi.org/10.1038/ncomms6684 pmid: 25471065
69 Lynch C J, Adams S H (2014). Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol, 10(12): 723–736
https://doi.org/10.1038/nrendo.2014.171 pmid: 25287287
70 Maassen J A, Janssen G M, ’t Hart L M (2005). Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med, 37(3): 213–221
https://doi.org/10.1080/07853890510007188 pmid: 16019720
71 Martins A R, Nachbar R T, Gorjao R, Vinolo M A, Festuccia W T, Lambertucci R H, Cury-Boaventura M F, Silveira L R, Curi R, Hirabara S M (2012). Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis, 11(1): 30
https://doi.org/10.1186/1476-511X-11-30 pmid: 22360800
72 McArdle M A, Finucane O M, Connaughton R M, McMorrow A M, Roche H M (2013). Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne), 4: 52
pmid: 23675368
73 Meshkani R, Taghikhani M, Al-Kateb H, Larijani B, Khatami S, Sidiropoulos G K, Hegele R A, Adeli K (2007). Polymorphisms within the protein tyrosine phosphatase 1B (PTPN1) gene promoter: functional characterization and association with type 2 diabetes and related metabolic traits. Clin Chem, 53(9): 1585–1592
https://doi.org/10.1373/clinchem.2007.088146 pmid: 17634210
74 Meshkani R, Taghikhani M, Mosapour A, Larijani B, Khatami S, Khoshbin E, Ahmadvand D, Saeidi P, Maleki A, Yavari K, Nasoohi N, Adeli K (2007). 1484insG polymorphism of the PTPN1 gene is associated with insulin resistance in an Iranian population. Arch Med Res, 38(5): 556–562
https://doi.org/10.1016/j.arcmed.2007.01.010 pmid: 17560463
75 Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T, Yagihashi S (2014). Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care, 37(7): 1966–1974
https://doi.org/10.2337/dc13-2018 pmid: 24705612
76 Montgomery M K, Turner N (2015). Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect, 4(1): R1–R15
https://doi.org/10.1530/EC-14-0092 pmid: 25385852
77 Morgan P G, Higdon R, Kolker N, Bauman A T, Ilkayeva O, Newgard C B, Kolker E, Steele L M, Sedensky M M (2015). Comparison of proteomic and metabolomic profiles of mutants of the mitochondrial respiratory chain in Caenorhabditis elegans. Mitochondrion, 20: 95–102
https://doi.org/10.1016/j.mito.2014.12.004 pmid: 25530493
78 Munday D C, Howell G, Barr J N, Hiscox J A (2014). Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology. The Journal of pharmacy and pharmacology, Muthulakshmi S, Chakrabarti A K, Mukherjee S.(2015) Gene expression profile of high-fat diet-fed C57BL/6J mice: in search of potential role of azelaic acid. J Physiol Biochem, 71(1): 29–42
79 Narbonne H, Paquis-Fluckinger V, Valero R, Heyries L, Pellissier J F, Vialettes B (2004). Gastrointestinal tract symptoms in maternally inherited diabetes and deafness (MIDD). Diabetes Metab, 30(1): 61–66
https://doi.org/10.1016/S1262-3636(07)70090-3 pmid: 15029099
80 Neustadt J, Pieczenik S R (2008). Medication-induced mitochondrial damage and disease. Mol Nutr Food Res, 52(7): 780–788
https://doi.org/10.1002/mnfr.200700075 pmid: 18626887
81 Ng F, Tang B L (2014). Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix. Mol Membr Biol, 31(7-8): 207–210
https://doi.org/10.3109/09687688.2014.987183 pmid: 25495576
82 Nieto-Vazquez I, Fernández-Veledo S, de Alvaro C, Rondinone C M, Valverde A M, Lorenzo M (2007). Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-α-induced insulin resistance. Diabetes, 56(2): 404–413
https://doi.org/10.2337/db06-0989 pmid: 17259385
83 Obre E, Rossignol R (2015). Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol, 59: 167–181
https://doi.org/10.1016/j.biocel.2014.12.008 pmid: 25542180
84 Pan T, Gao L, Wu G, Shen G, Xie S, Wen H, Yang J, Zhou Y, Tu Z, Qian W (2015). Elevated expression of glutaminase confers glucose utilization via glutaminolysis in prostate cancer. Biochem Biophys Res Commun, 456(1): 452–458
https://doi.org/10.1016/j.bbrc.2014.11.105 pmid: 25482439
85 Patwardhan G A, Beverly L J, Siskind L J (2016). Sphingolipids and mitochondrial apoptosis. J Bioenerg Biomembr, 48(2): 153–168
https://doi.org/10.1007/s10863-015-9602-3 pmid: 25620271
86 Pereira S, Breen D M, Naassan A E, Wang P Y, Uchino H, Fantus I G, Carpentier A C, Gutierrez-Juarez R, Brindley D N, Lam T K, Giacca A (2015). In vivo effects of polyunsaturated, monounsaturated, and saturated fatty acids on hepatic and peripheral insulin sensitivity. Metabolism, 64(2): 315–322
https://doi.org/10.1016/j.metabol.2014.10.019 pmid: 25467844
87 Pillai V B, Sundaresan N R, Gupta M P (2014). Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res, 114(2): 368–378
https://doi.org/10.1161/CIRCRESAHA.113.300536 pmid: 24436432
88 Roth M, Chen W Y (2014). Sorting out functions of sirtuins in cancer. Oncogene, 33(13): 1609–1620
https://doi.org/10.1038/onc.2013.120 pmid: 23604120
89 Salerno A, Fragasso G, Esposito A, Canu T, Lattuada G, Manzoni G, Del Maschio A, Margonato A, De Cobelli F, Perseghin G (2015). Effects of short-term manipulation of serum FFA concentrations on left ventricular energy metabolism and function in patients with heart failure: no association with circulating bio-markers of inflammation. Acta diabetologica, Sena L A, Chandel N S.(2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 48(2): 158–167
90 Shaikh S R, Sullivan E M, Alleman R J, Brown D A, Zeczycki T N (2014). Increasing mitochondrial membrane phospholipid content lowers the enzymatic activity of electron transport complexes. Biochemistry, 53(35): 5589–5591
https://doi.org/10.1021/bi500868g pmid: 25145682
91 Shin S Y, Kim T H, Wu H, Choi Y H, Kim S G (2014). SIRT1 activation by methylene blue, a repurposed drug, leads to AMPK-mediated inhibition of steatosis and steatohepatitis. Eur J Pharmacol, 727: 115–124
https://doi.org/10.1016/j.ejphar.2014.01.035 pmid: 24486702
92 Shokouhi S, Haghani K, Borji P, Bakhtiyari S (2015). Association between PGC-1alpha gene polymorphisms and type 2 diabetes risk: a case-control study of an Iranian population. Can J Diabetes, 39(1): 65–72
https://doi.org/10.1016/j.jcjd.2014.05.003 pmid: 25282005
93 Smiljanic K, Vanmierlo T, Mladenovic Djordjevic A, Perovic M, Ivkovic S, Lütjohann D, Kanazir S (2014). Cholesterol metabolism changes under long-term dietary restrictions while the cholesterol homeostasis remains unaffected in the cortex and hippocampus of aging rats. Age (Dordr), 36(3): 9654
https://doi.org/10.1007/s11357-014-9654-z pmid: 24756765
94 Song X, Wang B, Lin S, Jing L, Mao C, Xu P, Lv C, Liu W, Zuo J (2014). Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway. J Cell Mol Med, 18(11): 2198–2212
https://doi.org/10.1111/jcmm.12347 pmid: 25215580
95 Stefanowicz M, Strączkowski M, Karczewska-Kupczewska M (2015). The role of SIRT1 in the pathogenesis of insulin resistance in skeletal muscle. Postepy Hig Med Dosw (Online), 69: 63–68
96 Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, Grove K, Lane R, Aagaard-Tillery K (2011). Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J, 25(2): 714–726
https://doi.org/10.1096/fj.10-172080 pmid: 21097519
97 Suzuki Y, Nishimaki K, Taniyama M, Muramatsu T, Atsumi Y, Matsuoka K, Ohta S (2004). Lipoma and opthalmoplegia in mitochondrial diabetes associated with small heteroplasmy level of 3243 tRNA(Leu(UUR)) mutation. Diabetes Res Clin Pract, 63(3): 225–229
https://doi.org/10.1016/j.diabres.2003.10.024 pmid: 14757294
98 Taheripak G, Bakhtiyari S, Rajabibazl M, Pasalar P, Meshkani R (2013). Protein tyrosine phosphatase 1B inhibition ameliorates palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells. Free Radic Biol Med, 65: 1435–1446
https://doi.org/10.1016/j.freeradbiomed.2013.09.019 pmid: 24120971
99 Tanaka N, Takahashi S, Matsubara T, Jiang C, Sakamoto W, Chanturiya T, Teng R, Gavrilova O, Gonzalez F J (2015). Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J Biol Chem, 290(5): 3092–3105
https://doi.org/10.1074/jbc.M114.605980 pmid: 25477509
100 Tanaka N, Takahashi S, Matsubara T, Jiang C, Sakamoto W, Chanturiya T, Teng R, Gavrilova O, Gonzalez F J (2015). Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J Biol Chem, 290(5): 3092–3105
https://doi.org/10.1074/jbc.M114.605980 pmid: 25477509
101 Tang X, Shen T, Jiang X, Xia M, Sun X, Guo H, Ling W (2015). Purified anthocyanins from bilberry and black currant attenuate hepatic mitochondrial dysfunction and steatohepatitis in mice with methionine and choline deficiency. J Agric Food Chem, 63(2): 552–561
https://doi.org/10.1021/jf504926n pmid: 25536170
102 Taylor E M, Jones A D, Henagan T M (2014). A review of mitochondrial-derived fatty acids in epigenetic regulation of obesity and type 2 diabetes. J Nutrit Health Food Sci, 2(3): 1–4
pmid: 25364776
103 Tzivion G, Dobson M, Ramakrishnan G (2011). FoxO transcription factors; Regulation by AKT and 14–3-3 proteins. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research, 1813(11): 1938–1945
104 Udagawa C, Tada N, Asano J, Ishioka K, Ochiai K, Bonkobara M, Tsuchida S, Omi T (2014). The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs. BMC Res Notes, 7(1): 904
https://doi.org/10.1186/1756-0500-7-904 pmid: 25495519
105 Vakili S, Ebrahimi S S S, Sadeghi A, Gorgani-Firuzjaee S, Beigy M, Pasalar P, Meshkani R (2013). Hydrodynamic-based delivery of PTP1B shRNA reduces plasma glucose levels in diabetic mice. Mol Med Rep, 7(1): 211–216
https://doi.org/10.3892/mmr.2012.1172 pmid: 23138128
106 Venediktova N, Shigaeva M, Belova S, Belosludtsev K, Belosludtseva N, Gorbacheva O, Lezhnev E, Lukyanova L, Mironova G (2013). Oxidative phosphorylation and ion transport in the mitochondria of two strains of rats varying in their resistance to stress and hypoxia. Mol Cell Biochem, 383(1-2): 261–269
https://doi.org/10.1007/s11010-013-1774-8 pmid: 23943284
107 Villena J A (2014). New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J, 282(4):647–672
108 Vyssokikh M Y, Antonenko Y N, Lyamzaev K G, Rokitskaya T I, Skulachev V P (2015). Methodology for use of mitochondria-targeted cations in the field of oxidative stress-related research. Mitochondrial Medicine: Volume II, Manipulating Mitochondrial Function, 149–159
109 Wang Q, Sun X, Li X, Dong X, Li P, Zhao L (2015). Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: involvement of Sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway. Mol Med Rep, 11(1): 151–158
https://doi.org/10.3892/mmr.2014.2762 pmid: 25352008
110 Wang S P, Yang H, Wu J W, Gauthier N, Fukao T, Mitchell G A (2014). Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example. J Hum Evol, 77: 41–49
https://doi.org/10.1016/j.jhevol.2014.06.013 pmid: 25488255
111 Wang S P, Yang H, Wu J W, Gauthier N, Fukao T, Mitchell G A (2014). Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example. J Hum Evol, 77: 41–49
https://doi.org/10.1016/j.jhevol.2014.06.013 pmid: 25488255
112 Williams A S, Kang L, Zheng J, Grueter C, Bracy D P, James F D, Pozzi A, Wasserman D H (2015). Integrin α1-null mice exhibit improved fatty liver when fed a high fat diet despite severe hepatic insulin resistance. J Biol Chem, 290(10): 6546–6557
https://doi.org/10.1074/jbc.M114.615716 pmid: 25593319
113 Wright E Jr, Scism-Bacon J L, Glass L C (2006). Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract, 60(3): 308–314
https://doi.org/10.1111/j.1368-5031.2006.00825.x pmid: 16494646
114 Wuttke A (2015). Lipid signalling dynamics at the β-cell plasma membrane. Basic Clin Pharmacol Toxicol, 116(4): 281–290
https://doi.org/10.1111/bcpt.12369 pmid: 25529872
115 Yki-Järvinen H (2005). Fat in the liver and insulin resistance. Ann Med, 37(5): 347–356
https://doi.org/10.1080/07853890510037383 pmid: 16179270
116 Yki-Järvinen H, Westerbacka J (2005). The fatty liver and insulin resistance. Curr Mol Med, 5(3): 287–295
https://doi.org/10.2174/1566524053766031 pmid: 15892648
117 Yu H, Yang Z, Ding X, Wang Y, Han Y (2014). Correlation between the different chain lengths of free fatty acid oxidation and ability of trophoblastic invasion. Chin Med J (Engl), 127(19): 3378–3382
pmid: 25269899
118 Zabolotny J M, Haj F G, Kim Y B, Kim H J, Shulman G I, Kim J K, Neel B G, Kahn B B (2004). Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem, 279(23): 24844–24851
https://doi.org/10.1074/jbc.M310688200 pmid: 15031294
119 Zhao Y, Ling F, Griffin T M, He T, Towner R, Ruan H, Sun X H (2014). Up-regulation of the Sirtuin 1 (Sirt1) and peroxisome proliferator-activated receptor g coactivator-1α (PGC-1α) genes in white adipose tissue of Id1 protein-deficient mice: implications in the protection against diet and age-induced glucose intolerance. J Biol Chem, 289(42): 29112–29122
https://doi.org/10.1074/jbc.M114.571679 pmid: 25190816
120 Zhong H, Yin H (2015). Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol, 4: 193–199
https://doi.org/10.1016/j.redox.2014.12.011 pmid: 25598486
121 Zhu M, Du J, Chen S, Liu A D, Holmberg L, Chen Y, Zhang C, Tang C, Jin H (2014). L-cystathionine inhibits the mitochondria-mediated macrophage apoptosis induced by oxidized low density lipoprotein. Int J Mol Sci, 15(12): 23059–23073
https://doi.org/10.3390/ijms151223059 pmid: 25514411
122 Zhu M, Du J, Chen S, Liu A D, Holmberg L, Chen Y, Zhang C, Tang C, Jin H (2014). L-cystathionine inhibits the mitochondria-mediated macrophage apoptosis induced by oxidized low density lipoprotein. Int J Mol Sci, 15(12): 23059–23073
https://doi.org/10.3390/ijms151223059 pmid: 25514411
Related articles from Frontiers Journals
[1] FoSheng HSU, Yuxin MAO. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease[J]. Front Biol, 2013, 8(4): 395-407.
[2] Rebecca BERDEAUX. Metabolic regulation by salt inducible kinases[J]. Front Biol, 2011, 6(3): 231-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed