Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature

Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari

PDF(229 KB)
PDF(229 KB)
Front. Biol. ›› 2018, Vol. 13 ›› Issue (6) : 406-417. DOI: 10.1007/s11515-018-1521-3
REVIEW
REVIEW

Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature

Author information +
History +

Abstract

BACKGROUND: Diabetes mellitus (DM) is one of the most prevalent chronic diseases, and its prevalence continues to increase globally. The impact of mitochondrial dysfunction and lipid metabolism on diabetes mellitus and insulin resistance (IR) has been implicated in several previous reports; however, the results of studies are confusing despite four decades of study.

METHODS/RESULTS: This review has evaluated updated understanding of the role of mitochondrial dysfunction and lipid metabolism on type 2 diabetes, and found that mitochondrial dysfunction and lipid metabolism disorder induce the dysregulation of liver and pancreatic beta cells, insulin resistance, and type 2 diabetes.

CONCLUSION: Mitochondrial dysfunction and lipid metabolism induce metabolic dysregulation and finally increasing the possibility of diabetes.

Keywords

Insulin resistance / Type 2 diabetes / Mitochondrial dysfunction / Lipid metabolism

Cite this article

Download citation ▾
Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature. Front. Biol., 2018, 13(6): 406‒417 https://doi.org/10.1007/s11515-018-1521-3

References

[1]
Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Ortega A, Mauricio M D, Vila J M, Valles S L (2015). Astrocytes protect neurons from Aβ1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-g and SIRT-1. Int J Med Sci, 12(1): 48–56
CrossRef Pubmed Google scholar
[2]
Antos-Krzeminska N, Jarmuszkiewicz W (2014). External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria. Protist, 165(5): 580–593
CrossRef Pubmed Google scholar
[3]
Bakar M H A, Sarmidi M R, Kai C K, Huri H Z, Yaakob H (2014). Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-kB pathways. Int J Mol Sci, 15(12): 22227–22257
CrossRef Pubmed Google scholar
[4]
Bakhtiyari S, Meshkani R, Taghikhani M, Larijani B, Adeli K (2010). Protein tyrosine phosphatase-1B (PTP-1B) knockdown improves palmitate-induced insulin resistance in C2C12 skeletal muscle cells. Lipids, 45(3): 237–244
CrossRef Pubmed Google scholar
[5]
Bandyopadhyay G K, Lu M, Avolio E, Siddiqui J A, Gayen J R, Wollam J, Vu C U, Chi N W, O’Connor D T, Mahata S K (2015). Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance. Diabetes, 64(1): 104–116
CrossRef Pubmed Google scholar
[6]
Bettaieb A, Matsuo K, Matsuo I, Wang S, Melhem R, Koromilas A E, Haj F G (2012). Protein tyrosine phosphatase 1B deficiency potentiates PERK/eIF2α signaling in brown adipocytes. PLoS One, 7(4): e34412
CrossRef Pubmed Google scholar
[7]
Bose S K, Kim H, Meyer K, Wolins N, Davidson N O, Ray R (2014). Forkhead box transcription factor regulation and lipid accumulation by hepatitis C virus. J Virol, 88(8): 4195–4203
CrossRef Pubmed Google scholar
[8]
Camões F, Islinger M, Guimarães S C, Kilaru S, Schuster M, Godinho L F, Steinberg G, Schrader M (2015). New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and-dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta, 1853(1): 111–125
CrossRef Pubmed Google scholar
[9]
Carey A L, Vorlander C, Reddy-Luthmoodoo M, Natoli A K, Formosa M F, Bertovic D A, Anderson M J, Duffy S J, Kingwell B A (2014). Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS One, 9(3): e91997
CrossRef Pubmed Google scholar
[10]
Carey B W, Finley L W, Cross J R, Allis C D, Thompson C B (2015). Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, 518(7539): 413–416
CrossRef Pubmed Google scholar
[11]
Chen L, Liu T, Zhang S, Zhou J, Wang Y, Di W (2014). Succinate dehydrogenase subunit B inhibits the AMPK-HIF-1α pathway in human ovarian cancer in vitro. J Ovarian Res, 7(1): 115
Pubmed
[12]
Chinnery P (2014). Mitochondrial disorders overview. Synonyms: mitochondrial encephalomyopathies, mitochondrial myopathies, oxidative phosphorylation disorders, respiratory chain disorders. GeneReviews Seattle: University of Washington
[13]
Chinnery P F, Elliott H R, Hudson G, Samuels D C, Relton C L (2012). Epigenetics, epidemiology and mitochondrial DNA diseases. Int J Epidemiol, 41(1): 177–187
CrossRef Pubmed Google scholar
[14]
Cook J R, Matsumoto M, Banks A S, Kitamura T, Tsuchiya K, Accili D (2015). A Mutant Allele Encoding DNA-Binding-Deficient Foxo1 Differentially Regulates Hepatic Glucose and Lipid Metabolism. Diabetes, 64(6): 1951–1965
[15]
Czibik G, Steeples V, Yavari A, Ashrafian H (2014). Citric acid cycle intermediates in cardioprotection. Circ Cardiovasc Genet, 7(5): 711–719
[15]
Dadke S S, Li H C, Kusari A B, Begum N, Kusari J (2000). Elevated expression and activity of protein-tyrosine phosphatase 1B in skeletal muscle of insulin-resistant type II diabetic Goto-Kakizaki rats. Biochem Biophys Res Commun, 274(3): 583–589
CrossRef Pubmed Google scholar
[16]
de Luca C, Olefsky J M (2008). Inflammation and insulin resistance. FEBS Lett, 582(1): 97–105
CrossRef Pubmed Google scholar
[17]
Delibegovic M, Bence K K, Mody N, Hong E G, Ko H J, Kim J K, Kahn B B, Neel B G (2007). Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol, 27(21): 7727–7734
CrossRef Pubmed Google scholar
[18]
Demine S, Reddy N, Renard P, Raes M, Arnould T (2014). Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites, 4(3): 831–878
CrossRef Pubmed Google scholar
[19]
Desai G S, Mathews S T (2014). Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance. World J Diabetes, 5(6): 730–738
CrossRef Pubmed Google scholar
[20]
Ding H, Zhang Y, Xu C, Hou D, Li J, Zhang Y, Peng W, Zen K, Zhang C Y, Jiang X (2014). Norathyriol reverses obesity- and high-fat-diet-induced insulin resistance in mice through inhibition of PTP1B. Diabetologia, 57(10): 2145–2154
CrossRef Pubmed Google scholar
[21]
Dudley K J, Sloboda D M, Connor K L, Beltrand J, Vickers M H (2011). Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation. PLoS One, 6(7): e21662
CrossRef Pubmed Google scholar
[22]
Egger G, Liang G, Aparicio A, Jones P A (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990): 457–463
CrossRef Pubmed Google scholar
[23]
Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy A L, Normandin D, Cheng A, Himms-Hagen J, Chan C C, Ramachandran C, Gresser M J, Tremblay M L, Kennedy B P (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283(5407): 1544–1548
CrossRef Pubmed Google scholar
[24]
Fatland B L, Ke J, Anderson M D, Mentzen W I, Cui L W, Allred C C, Johnston J L, Nikolau B J, Wurtele E S (2002). Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol, 130(2): 740–756
CrossRef Pubmed Google scholar
[25]
Ferber E C, Peck B, Delpuech O, Bell G P, East P, Schulze A (2012). FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ, 19(6): 968–979
CrossRef Pubmed Google scholar
[26]
Ferla M P, Thrash J C, Giovannoni S J, Patrick W M (2013). New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One, 8(12): e83383
CrossRef Pubmed Google scholar
[27]
Forkink M, Manjeri G R, Liemburg-Apers D C, Nibbeling E, Blanchard M, Wojtala A, Smeitink J A, Wieckowski M R, Willems P H, Koopman W J (2014). Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. Biochim Biophys Acta, 1837(8): 1247–1256
CrossRef Pubmed Google scholar
[28]
Freund-Michel V, Khoyrattee N, Savineau J P, Muller B, Guibert C (2014). Mitochondria: roles in pulmonary hypertension. Int J Biochem Cell Biol, 55: 93–97
CrossRef Pubmed Google scholar
[29]
Freund-Michel V, Khoyrattee N, Savineau J P, Muller B, Guibert C (2014). Mitochondria: roles in pulmonary hypertension. Int J Biochem Cell Biol, 55: 93–97
CrossRef Pubmed Google scholar
[30]
Frohman M A (2015). Role of mitochondrial lipids in guiding fission and fusion. J Mol Med (Berl), 93(3): 263–269
CrossRef Pubmed Google scholar
[31]
Fukao T, Mitchell G, Sass J O, Hori T, Orii K, Aoyama Y (2014). Ketone body metabolism and its defects. J Inherit Metab Dis, 37(4): 541–551
CrossRef Pubmed Google scholar
[32]
Garcia de la Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio J S, Bru R, Olmos E (2015). New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytol, 205(1): 216–239
CrossRef Pubmed Google scholar
[33]
Ge Z J, Luo S M, Lin F, Liang Q X, Huang L, Wei Y C, Hou Y, Han Z M, Schatten H, Sun Q Y (2014). DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect, 122(2): 159–164
CrossRef Pubmed Google scholar
[34]
Genova M L, Lenaz G (2014). Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta, 1837(4): 427–443
CrossRef Pubmed Google scholar
[35]
Gogga P, Karbowska J, Meissner W, Kochan Z (2011). Role of leptin in the regulation of lipid and carbohydrate metabolism. Postepy Hig Med Dosw (Online), 65: 255–62
[36]
Gogoi B, Chatterjee P, Mukherjee S, Buragohain A K, Bhattacharya S, Dasgupta S (2014). A polyphenol rescues lipid induced insulin resistance in skeletal muscle cells and adipocytes. Biochem Biophys Res Commun, 452(3): 382–388
CrossRef Pubmed Google scholar
[37]
Goldstein B J (1993). Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor, 3(1): 1–15
Pubmed
[38]
Graham E J, Adler F R (2014). Long-term models of oxidative stress and mitochondrial damage in insulin resistance progression. J Theor Biol, 340: 238–250
CrossRef Pubmed Google scholar
[39]
Gu P, Liu W, Shao J, Lu B, Wang Y, Jiang W, Jiang S (2010). Protein tyrosine phosphatase 1B gene polymorphisms and obesity-related hypertension: a case-control study in Chinese population. Shengwu Yixue Gongcheng Yu Linchuang, 14(5): 442–446
[40]
Haj F G, Zabolotny J M, Kim Y B, Kahn B B, Neel B G (2005). Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem, 280(15): 15038–15046
CrossRef Pubmed Google scholar
[41]
Harijith A, Ebenezer D L, Natarajan V (2014). Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol, 5: 352
Pubmed
[42]
Hasan N M, Longacre M J, Stoker S W, Kendrick M A, MacDonald M J (2015). Mitochondrial malic enzyme 3 is important for insulin secretion in pancreatic β-cells. Mol Endocrinol, 29(3): 396–410
Pubmed
[43]
Hiltunen J K, Autio K J, Schonauer M S, Kursu V A, Dieckmann C L, Kastaniotis A J (2010). Mitochondrial fatty acid synthesis and respiration. Biochim Biophys Acta, 1797(6-7): 1195–1202
CrossRef Pubmed Google scholar
[44]
Hynes M J, Murray S L (2010). ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell, 9(7): 1039–1048
CrossRef Pubmed Google scholar
[45]
Ishii M, Maeda A, Tani S, Akagawa M (2015). Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Arch Biochem Biophys, 566: 26–35
CrossRef Pubmed Google scholar
[46]
Ishii M, Maeda A, Tani S, Akagawa M (2015). Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Arch Biochem Biophys, 566: 26–35
CrossRef Pubmed Google scholar
[47]
Jacobsen S C, Brøns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, Hall E, Calvanese V, Nilsson E, Jørgensen S W, Mandrup S, Ling C, Fernandez A F, Fraga M F, Poulsen P, Vaag A (2012). Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia, 55(12): 3341–3349
CrossRef Pubmed Google scholar
[48]
James A M, Murphy M P (2002). How mitochondrial damage affects cell function. J Biomed Sci, 9(6 Pt 1): 475–487
CrossRef Pubmed Google scholar
[49]
Javor E D, Cochran E K, Musso C, Young J R, Depaoli A M, Gorden P (2005). Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Diabetes, 54(7): 1994–2002
CrossRef Pubmed Google scholar
[50]
Johnson T O, Ermolieff J, Jirousek M R (2002). Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov, 1(9): 696–709
CrossRef Pubmed Google scholar
[51]
Ka S O, Song M Y, Bae E J, Park B H (2015). Myeloid SIRT1 regulates macrophage infiltration and insulin sensitivity in mice fed a high-fat diet. J Endocrinol, 224(2): 109–118
CrossRef Pubmed Google scholar
[52]
Kadota Y, Kazama S, Bajotto G, Kitaura Y, Shimomura Y (2012). Clofibrate-induced reduction of plasma branched-chain amino acid concentrations impairs glucose tolerance in rats. JPEN J Parenter Enteral Nutr, 36(3): 337–343
CrossRef Pubmed Google scholar
[53]
Kang L, Dai C, Lustig M E, Bonner J S, Mayes W H, Mokshagundam S, James F D, Thompson C S, Lin C T, Perry C G, Anderson E J, Neufer P D, Wasserman D H, Powers A C (2014). Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice. Diabetes, 63(11): 3699–3710
CrossRef Pubmed Google scholar
[54]
Kathirvel E, Morgan K, French S W, Morgan T R (2013). Acetyl-L-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease. Nutr Res, 33(11): 932–941
CrossRef Pubmed Google scholar
[55]
Kathirvel E, Morgan K, French S W, Morgan T R (2013). Acetyl-L-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease. Nutr Res, 33(11): 932–941
CrossRef Pubmed Google scholar
[56]
Khalyfa A, Carreras A, Hakim F, Cunningham J M, Wang Y, Gozal D (2013). Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int J Obes (Lond), 37(11): 1481–1489
CrossRef Pubmed Google scholar
[57]
Kim J A, Wei Y, Sowers J R (2008). Role of mitochondrial dysfunction in insulin resistance. Circ Res, 102(4): 401–414
CrossRef Pubmed Google scholar
[58]
Klaman L D, Boss O, Peroni O D, Kim J K, Martino J L, Zabolotny J M, Moghal N, Lubkin M, Kim Y B, Sharpe A H, Stricker-Krongrad A, Shulman G I, Neel B G, Kahn B B (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol, 20(15): 5479–5489
CrossRef Pubmed Google scholar
[59]
Koob S, Reichert A S (2014). Novel intracellular functions of apolipoproteins: the ApoO protein family as constituents of the Mitofilin/MINOS complex determines cristae morphology in mitochondria. Biol Chem, 395(3): 285–296
CrossRef Pubmed Google scholar
[60]
Kowalski G M, Kloehn J, Burch M L, Selathurai A, Hamley S, Bayol S A, Lamon S, Watt M J, Lee-Young R S, McConville M J, Bruce C R (2015). Overexpression of sphingosine kinase 1 in liver reduces triglyceride content in mice fed a low but not high-fat diet. Biochim Biophys Acta, 1851(2): 210–219
CrossRef Pubmed Google scholar
[61]
Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J (2015). Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng, 28: 28–42
CrossRef Pubmed Google scholar
[62]
Kühn K, Yin G, Duncan O, Law S R, Kubiszewski-Jakubiak S, Kaur P, Meyer E, Wang Y, Small C C, Giraud E, Narsai R, Whelan J (2015). Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. Plant Physiol, 167(1): 228–250
CrossRef Pubmed Google scholar
[63]
Laafi J, Homedan C, Jacques C, Gueguen N, Schmitt C, Puy H, Reynier P, Carmen Martinez M, Malthièry Y (2014). Pro-oxidant effect of ALA is implicated in mitochondrial dysfunction of HepG2 cells. Biochimie, 106: 157–166
CrossRef Pubmed Google scholar
[64]
Lees E K, Krol E, Shearer K, Mody N, Gettys T W, Delibegovic M (2015). Effects of hepatic protein tyrosine phosphatase 1B and methionine restriction on hepatic and whole-body glucose and lipid metabolism in mice. Metabolism, 64(2): 305–314
CrossRef Pubmed Google scholar
[65]
Lian J, Si T, Nair N U, Zhao H (2014). Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng, 24: 139–149
CrossRef Pubmed Google scholar
[66]
Lian K, Du C, Liu Y, Zhu D, Yan W, Zhang H, Hong Z, Liu P, Zhang L, Pei H, Zhang J, Gao C, Xin C, Cheng H, Xiong L, Tao L (2015). Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes, 64(1): 49–59
CrossRef Pubmed Google scholar
[67]
Liu J, Li J, Li W J, Wang C M (2013). The role of uncoupling proteins in diabetes mellitus. J Diabetes Res, 2013: 585897
CrossRef Pubmed Google scholar
[68]
Liu W, Cao H, Ye C, Chang C, Lu M, Jing Y, Zhang D, Yao X, Duan Z, Xia H, Wang Y C, Jiang J, Liu M F, Yan J, Ying H (2014). Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nat Commun, 5(1): 5684
CrossRef Pubmed Google scholar
[69]
Lynch C J, Adams S H (2014). Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol, 10(12): 723–736
CrossRef Pubmed Google scholar
[70]
Maassen J A, Janssen G M, ’t Hart L M (2005). Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med, 37(3): 213–221
CrossRef Pubmed Google scholar
[71]
Martins A R, Nachbar R T, Gorjao R, Vinolo M A, Festuccia W T, Lambertucci R H, Cury-Boaventura M F, Silveira L R, Curi R, Hirabara S M (2012). Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis, 11(1): 30
CrossRef Pubmed Google scholar
[72]
McArdle M A, Finucane O M, Connaughton R M, McMorrow A M, Roche H M (2013). Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne), 4: 52
Pubmed
[73]
Meshkani R, Taghikhani M, Al-Kateb H, Larijani B, Khatami S, Sidiropoulos G K, Hegele R A, Adeli K (2007). Polymorphisms within the protein tyrosine phosphatase 1B (PTPN1) gene promoter: functional characterization and association with type 2 diabetes and related metabolic traits. Clin Chem, 53(9): 1585–1592
CrossRef Pubmed Google scholar
[74]
Meshkani R, Taghikhani M, Mosapour A, Larijani B, Khatami S, Khoshbin E, Ahmadvand D, Saeidi P, Maleki A, Yavari K, Nasoohi N, Adeli K (2007). 1484insG polymorphism of the PTPN1 gene is associated with insulin resistance in an Iranian population. Arch Med Res, 38(5): 556–562
CrossRef Pubmed Google scholar
[75]
Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T, Yagihashi S (2014). Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care, 37(7): 1966–1974
CrossRef Pubmed Google scholar
[76]
Montgomery M K, Turner N (2015). Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect, 4(1): R1–R15
CrossRef Pubmed Google scholar
[77]
Morgan P G, Higdon R, Kolker N, Bauman A T, Ilkayeva O, Newgard C B, Kolker E, Steele L M, Sedensky M M (2015). Comparison of proteomic and metabolomic profiles of mutants of the mitochondrial respiratory chain in Caenorhabditis elegans. Mitochondrion, 20: 95–102
CrossRef Pubmed Google scholar
[78]
Munday D C, Howell G, Barr J N, Hiscox J A (2014). Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology. The Journal of pharmacy and pharmacology, Muthulakshmi S, Chakrabarti A K, Mukherjee S.(2015) Gene expression profile of high-fat diet-fed C57BL/6J mice: in search of potential role of azelaic acid. J Physiol Biochem, 71(1): 29–42
[79]
Narbonne H, Paquis-Fluckinger V, Valero R, Heyries L, Pellissier J F, Vialettes B (2004). Gastrointestinal tract symptoms in maternally inherited diabetes and deafness (MIDD). Diabetes Metab, 30(1): 61–66
CrossRef Pubmed Google scholar
[80]
Neustadt J, Pieczenik S R (2008). Medication-induced mitochondrial damage and disease. Mol Nutr Food Res, 52(7): 780–788
CrossRef Pubmed Google scholar
[81]
Ng F, Tang B L (2014). Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix. Mol Membr Biol, 31(7-8): 207–210
CrossRef Pubmed Google scholar
[82]
Nieto-Vazquez I, Fernández-Veledo S, de Alvaro C, Rondinone C M, Valverde A M, Lorenzo M (2007). Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-α-induced insulin resistance. Diabetes, 56(2): 404–413
CrossRef Pubmed Google scholar
[83]
Obre E, Rossignol R (2015). Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol, 59: 167–181
CrossRef Pubmed Google scholar
[84]
Pan T, Gao L, Wu G, Shen G, Xie S, Wen H, Yang J, Zhou Y, Tu Z, Qian W (2015). Elevated expression of glutaminase confers glucose utilization via glutaminolysis in prostate cancer. Biochem Biophys Res Commun, 456(1): 452–458
CrossRef Pubmed Google scholar
[85]
Patwardhan G A, Beverly L J, Siskind L J (2016). Sphingolipids and mitochondrial apoptosis. J Bioenerg Biomembr, 48(2): 153–168
CrossRef Pubmed Google scholar
[86]
Pereira S, Breen D M, Naassan A E, Wang P Y, Uchino H, Fantus I G, Carpentier A C, Gutierrez-Juarez R, Brindley D N, Lam T K, Giacca A (2015). In vivo effects of polyunsaturated, monounsaturated, and saturated fatty acids on hepatic and peripheral insulin sensitivity. Metabolism, 64(2): 315–322
CrossRef Pubmed Google scholar
[87]
Pillai V B, Sundaresan N R, Gupta M P (2014). Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res, 114(2): 368–378
CrossRef Pubmed Google scholar
[88]
Roth M, Chen W Y (2014). Sorting out functions of sirtuins in cancer. Oncogene, 33(13): 1609–1620
CrossRef Pubmed Google scholar
[89]
Salerno A, Fragasso G, Esposito A, Canu T, Lattuada G, Manzoni G, Del Maschio A, Margonato A, De Cobelli F, Perseghin G (2015). Effects of short-term manipulation of serum FFA concentrations on left ventricular energy metabolism and function in patients with heart failure: no association with circulating bio-markers of inflammation. Acta diabetologica, Sena L A, Chandel N S.(2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 48(2): 158–167
[90]
Shaikh S R, Sullivan E M, Alleman R J, Brown D A, Zeczycki T N (2014). Increasing mitochondrial membrane phospholipid content lowers the enzymatic activity of electron transport complexes. Biochemistry, 53(35): 5589–5591
CrossRef Pubmed Google scholar
[91]
Shin S Y, Kim T H, Wu H, Choi Y H, Kim S G (2014). SIRT1 activation by methylene blue, a repurposed drug, leads to AMPK-mediated inhibition of steatosis and steatohepatitis. Eur J Pharmacol, 727: 115–124
CrossRef Pubmed Google scholar
[92]
Shokouhi S, Haghani K, Borji P, Bakhtiyari S (2015). Association between PGC-1alpha gene polymorphisms and type 2 diabetes risk: a case-control study of an Iranian population. Can J Diabetes, 39(1): 65–72
CrossRef Pubmed Google scholar
[93]
Smiljanic K, Vanmierlo T, Mladenovic Djordjevic A, Perovic M, Ivkovic S, Lütjohann D, Kanazir S (2014). Cholesterol metabolism changes under long-term dietary restrictions while the cholesterol homeostasis remains unaffected in the cortex and hippocampus of aging rats. Age (Dordr), 36(3): 9654
CrossRef Pubmed Google scholar
[94]
Song X, Wang B, Lin S, Jing L, Mao C, Xu P, Lv C, Liu W, Zuo J (2014). Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway. J Cell Mol Med, 18(11): 2198–2212
CrossRef Pubmed Google scholar
[95]
Stefanowicz M, Strączkowski M, Karczewska-Kupczewska M (2015). The role of SIRT1 in the pathogenesis of insulin resistance in skeletal muscle. Postepy Hig Med Dosw (Online), 69: 63–68
[96]
Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, Grove K, Lane R, Aagaard-Tillery K (2011). Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J, 25(2): 714–726
CrossRef Pubmed Google scholar
[97]
Suzuki Y, Nishimaki K, Taniyama M, Muramatsu T, Atsumi Y, Matsuoka K, Ohta S (2004). Lipoma and opthalmoplegia in mitochondrial diabetes associated with small heteroplasmy level of 3243 tRNA(Leu(UUR)) mutation. Diabetes Res Clin Pract, 63(3): 225–229
CrossRef Pubmed Google scholar
[98]
Taheripak G, Bakhtiyari S, Rajabibazl M, Pasalar P, Meshkani R (2013). Protein tyrosine phosphatase 1B inhibition ameliorates palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells. Free Radic Biol Med, 65: 1435–1446
CrossRef Pubmed Google scholar
[99]
Tanaka N, Takahashi S, Matsubara T, Jiang C, Sakamoto W, Chanturiya T, Teng R, Gavrilova O, Gonzalez F J (2015). Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J Biol Chem, 290(5): 3092–3105
CrossRef Pubmed Google scholar
[100]
Tanaka N, Takahashi S, Matsubara T, Jiang C, Sakamoto W, Chanturiya T, Teng R, Gavrilova O, Gonzalez F J (2015). Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J Biol Chem, 290(5): 3092–3105
CrossRef Pubmed Google scholar
[101]
Tang X, Shen T, Jiang X, Xia M, Sun X, Guo H, Ling W (2015). Purified anthocyanins from bilberry and black currant attenuate hepatic mitochondrial dysfunction and steatohepatitis in mice with methionine and choline deficiency. J Agric Food Chem, 63(2): 552–561
CrossRef Pubmed Google scholar
[102]
Taylor E M, Jones A D, Henagan T M (2014). A review of mitochondrial-derived fatty acids in epigenetic regulation of obesity and type 2 diabetes. J Nutrit Health Food Sci, 2(3): 1–4
Pubmed
[103]
Tzivion G, Dobson M, Ramakrishnan G (2011). FoxO transcription factors; Regulation by AKT and 14–3-3 proteins. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research, 1813(11): 1938–1945
[104]
Udagawa C, Tada N, Asano J, Ishioka K, Ochiai K, Bonkobara M, Tsuchida S, Omi T (2014). The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs. BMC Res Notes, 7(1): 904
CrossRef Pubmed Google scholar
[105]
Vakili S, Ebrahimi S S S, Sadeghi A, Gorgani-Firuzjaee S, Beigy M, Pasalar P, Meshkani R (2013). Hydrodynamic-based delivery of PTP1B shRNA reduces plasma glucose levels in diabetic mice. Mol Med Rep, 7(1): 211–216
CrossRef Pubmed Google scholar
[106]
Venediktova N, Shigaeva M, Belova S, Belosludtsev K, Belosludtseva N, Gorbacheva O, Lezhnev E, Lukyanova L, Mironova G (2013). Oxidative phosphorylation and ion transport in the mitochondria of two strains of rats varying in their resistance to stress and hypoxia. Mol Cell Biochem, 383(1-2): 261–269
CrossRef Pubmed Google scholar
[107]
Villena J A (2014). New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J, 282(4):647–672
[108]
Vyssokikh M Y, Antonenko Y N, Lyamzaev K G, Rokitskaya T I, Skulachev V P (2015). Methodology for use of mitochondria-targeted cations in the field of oxidative stress-related research. Mitochondrial Medicine: Volume II, Manipulating Mitochondrial Function, 149–159
[109]
Wang Q, Sun X, Li X, Dong X, Li P, Zhao L (2015). Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: involvement of Sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway. Mol Med Rep, 11(1): 151–158
CrossRef Pubmed Google scholar
[110]
Wang S P, Yang H, Wu J W, Gauthier N, Fukao T, Mitchell G A (2014). Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example. J Hum Evol, 77: 41–49
CrossRef Pubmed Google scholar
[111]
Wang S P, Yang H, Wu J W, Gauthier N, Fukao T, Mitchell G A (2014). Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example. J Hum Evol, 77: 41–49
CrossRef Pubmed Google scholar
[112]
Williams A S, Kang L, Zheng J, Grueter C, Bracy D P, James F D, Pozzi A, Wasserman D H (2015). Integrin α1-null mice exhibit improved fatty liver when fed a high fat diet despite severe hepatic insulin resistance. J Biol Chem, 290(10): 6546–6557
CrossRef Pubmed Google scholar
[113]
Wright E Jr, Scism-Bacon J L, Glass L C (2006). Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract, 60(3): 308–314
CrossRef Pubmed Google scholar
[114]
Wuttke A (2015). Lipid signalling dynamics at the β-cell plasma membrane. Basic Clin Pharmacol Toxicol, 116(4): 281–290
CrossRef Pubmed Google scholar
[115]
Yki-Järvinen H (2005). Fat in the liver and insulin resistance. Ann Med, 37(5): 347–356
CrossRef Pubmed Google scholar
[116]
Yki-Järvinen H, Westerbacka J (2005). The fatty liver and insulin resistance. Curr Mol Med, 5(3): 287–295
CrossRef Pubmed Google scholar
[117]
Yu H, Yang Z, Ding X, Wang Y, Han Y (2014). Correlation between the different chain lengths of free fatty acid oxidation and ability of trophoblastic invasion. Chin Med J (Engl), 127(19): 3378–3382
Pubmed
[118]
Zabolotny J M, Haj F G, Kim Y B, Kim H J, Shulman G I, Kim J K, Neel B G, Kahn B B (2004). Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem, 279(23): 24844–24851
CrossRef Pubmed Google scholar
[119]
Zhao Y, Ling F, Griffin T M, He T, Towner R, Ruan H, Sun X H (2014). Up-regulation of the Sirtuin 1 (Sirt1) and peroxisome proliferator-activated receptor g coactivator-1α (PGC-1α) genes in white adipose tissue of Id1 protein-deficient mice: implications in the protection against diet and age-induced glucose intolerance. J Biol Chem, 289(42): 29112–29122
CrossRef Pubmed Google scholar
[120]
Zhong H, Yin H (2015). Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol, 4: 193–199
CrossRef Pubmed Google scholar
[121]
Zhu M, Du J, Chen S, Liu A D, Holmberg L, Chen Y, Zhang C, Tang C, Jin H (2014). L-cystathionine inhibits the mitochondria-mediated macrophage apoptosis induced by oxidized low density lipoprotein. Int J Mol Sci, 15(12): 23059–23073
CrossRef Pubmed Google scholar
[122]
Zhu M, Du J, Chen S, Liu A D, Holmberg L, Chen Y, Zhang C, Tang C, Jin H (2014). L-cystathionine inhibits the mitochondria-mediated macrophage apoptosis induced by oxidized low density lipoprotein. Int J Mol Sci, 15(12): 23059–23073
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(229 KB)

Accesses

Citations

Detail

Sections
Recommended

/