Please wait a minute...

Frontiers in Biology

Front. Biol.    2015, Vol. 10 Issue (1) : 11-27     https://doi.org/10.1007/s11515-014-1340-0
REVIEW
An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy
Joshua D. TOMPKINS(),Arthur D. RIGGS
Department of Diabetes and Metabolic Disease Research, Beckman Research Institute/City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
Download: PDF(605 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As life expectancy rises, the prevalence of heart failure is steadily increasing, while donors for organ transplantation remain in short supply (Zwi-Dantsis and Gepstein, 2012). Indeed, myocardial infarction represents the foremost cause of death within industrialized nations (Henning, 2011) and further, approximately 1% of all newborns harbor a congenital heart defect. Although medical interventions allow>80% of those with cardiac defects to survive to adulthood, there are often extreme emotional and financial burdens that accompany such congenital anomalies, and many individuals will remain at a heightened risk for myocardial infarction throughout the remainder of their lives (Verheugt et al., 2010; Amianto et al., 2011). In this review, we will discuss the nature of the failing heart and strategies for repair from an epigenetic standpoint. Significant focus will reside on pluripotent-to-cardiomyocyte differentiation for cell replacement, epigenetic mechanisms of cardiomyocyte differentiation, epigenetic “memories,” and epigenetic control of cardiomyocyte cell fate toward translational utility.

Keywords heart failure      pluripotent      cardiomyocytes      epigenetics      DNA methylation      lncRNA     
Corresponding Author(s): Joshua D. TOMPKINS   
Just Accepted Date: 17 November 2014   Online First Date: 02 February 2015    Issue Date: 14 February 2015
 Cite this article:   
Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-014-1340-0
http://journal.hep.com.cn/fib/EN/Y2015/V10/I1/11
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Joshua D. TOMPKINS
Arthur D. RIGGS
Term Abbreviation
heart failure HF
myocardial infarction MI
cardiomyocyte CM
cardiac progenitor CP
ventricular cardiomyocyte VM
pluripotent-derived-cardiomyocyte pluripotent-CM
hESC-derived-cardiomyocyte hESC-CM
chromatin remodeling complex CRC
polycomb remodeling complex 2 PRC2
histone methyl transferase HMT
histone deacetylase HDAC
histone acetyltransferase HAT
X-chromosome inactivation XCI
non-coding RNA ncRNA
microRNA miRNA
long non-coding RNA lncRNA
Tab.1  Common abbreviations within article
Fig.1  Basic epigenetic mechanisms that govern chromatin accessibility and transcription activity. As shown, patterns of histone modifications, DNA methylation, ncRNA expression, and chromatin remodeling (including local nucleosome density) all can influence levels of chromatin compaction and ultimately transcription at a typical promoter (Arya et al., 2010; Bannister and Kouzarides, 2011; Fisher and Fisher, 2011; Handy et al., 2011; Huang and Li, 2012; the ENCODE Project Consortium, 2012; Grote and Herrmann, 2013; Chen and Dent, 2014). Common enzymes that control the deposition or removal of epigenetic marks are displayed in red. Complexes that ncRNAs may associate with toward chromatin modulation are shown in blue. miRNA is displayed post-transcription, processing, and nuclear export.
1 Ahmed W, Ali I S, Riaz M, Younas A, Sadeque A, Niazi A K, Niazi S H, Ali S H B, Azam M, Qamar R (2013). Association of ANRIL polymorphism (rs1333049:C>G) with myocardial infarction and its pharmacogenomic role in hypercholesterolemia. Gene, 515(2): 416–420
https://doi.org/10.1016/j.gene.2012.12.044 pmid: 23266621
2 Amianto F, Bergui G, Abbate-Daga G, Bellicanta A, Munno D, Fassino S (2011). Growing up with a congenital heart disease: neuro-cognitive, psychopathological and quality of life outcomes. Panminerva Med, 53(2): 109–127
pmid: 21659976
3 Anderson D, Self T, Mellor I R, Goh G, Hill S J, Denning C (2007). Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther, 15(11): 2027–2036
https://doi.org/10.1038/sj.mt.6300303 pmid: 17895862
4 Antos C L, McKinsey T A, Dreitz M, Hollingsworth L M, Zhang C L, Schreiber K, Rindt H, Gorczynski R J, Olson E N (2003). Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem, 278(31): 28930–28937
https://doi.org/10.1074/jbc.M303113200 pmid: 12761226
5 Arya G, Maitra A, Grigoryev S A (2010). A structural perspective on the where, how, why, and what of nucleosome positioning. J Biomol Struct Dyn, 27(6): 803–820
https://doi.org/10.1080/07391102.2010.10508585 pmid: 20232935
6 Awad S, Kunhi M, Little G H, Bai Y, An W, Bers D, Kedes L, Poizat C (2013). Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res, 41(16): 7656–7672
https://doi.org/10.1093/nar/gkt500 pmid: 23804765
7 Backs J, Song K, Bezprozvannaya S, Chang S, Olson E N (2006). CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest, 116(7): 1853–1864
https://doi.org/10.1172/JCI27438 pmid: 16767219
8 Bannister A J, Kouzarides T (2011). Regulation of chromatin by histone modifications. Cell Res, 21(3): 381–395
https://doi.org/10.1038/cr.2011.22 pmid: 21321607
9 Bar-Nur O, Russ H A, Efrat S, Benvenisty N (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 9(1): 17–23
https://doi.org/10.1016/j.stem.2011.06.007 pmid: 21726830
10 Bergmann O, Bhardwaj R D, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz B A, Druid H, Jovinge S, Frisén J (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923): 98–102
https://doi.org/10.1126/science.1164680 pmid: 19342590
11 Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth R S, Avkiran M, Martin J L, Pogwizd S M, Bers D M (2008). Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res, 102(6): 695–702
https://doi.org/10.1161/CIRCRESAHA.107.169755 pmid: 18218981
12 Brito-Martins M, Harding S E, Ali N N (2008). beta(1)- and beta(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart. Br J Pharmacol, 153(4): 751–759
https://doi.org/10.1038/sj.bjp.0707619 pmid: 18193079
13 Brons I G, Smithers L E, Trotter M W, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes S M, Howlett S K, Clarkson A, Ahrlund-Richter L, Pedersen R A, Vallier L (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150): 191–195
https://doi.org/10.1038/nature05950 pmid: 17597762
14 Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957–1966
https://doi.org/10.1261/rna.7135204 pmid: 15525708
15 Cai Y, Geutjes E J, de Lint K, Roepman P, Bruurs L, Yu L R, Wang W, van Blijswijk J, Mohammad H, de Rink I, Bernards R, Baylin S B (2014). The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene, 33(17): 2157–2168
https://doi.org/10.1038/onc.2013.178 pmid: 23708667
16 Carpenter L, Carr C, Yang C T, Stuckey D J, Clarke K, Watt S M (2012). Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev, 21(6): 977–986
https://doi.org/10.1089/scd.2011.0075 pmid: 22182484
17 Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007a). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol, 50(19): 1884–1893
https://doi.org/10.1016/j.jacc.2007.07.054 pmid: 17980256
18 Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib I H, Gepstein L, Levenberg S (2007b). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res, 100(2): 263–272
https://doi.org/10.1161/01.RES.0000257776.05673.ff pmid: 17218605
19 Chang S, McKinsey T A, Zhang C L, Richardson J A, Hill J A, Olson E N (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol, 24(19): 8467–8476
https://doi.org/10.1128/MCB.24.19.8467-8476.2004 pmid: 15367668
20 Chen J, Huang Z P, Seok H Y, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, Pu W T, Liao R, Wang D Z (2013). mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res, 112(12): 1557–1566
https://doi.org/10.1161/CIRCRESAHA.112.300658 pmid: 23575307
21 Chen T, Dent S Y (2014). Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet, 15(2): 93–106
https://doi.org/10.1038/nrg3607 pmid: 24366184
22 Chimenti I, Gaetani R, Barile L, Forte E, Ionta V, Angelini F, Frati G, Messina E, Giacomello A (2012). Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol, 879: 327–338
https://doi.org/10.1007/978-1-61779-815-3_19 pmid: 22610568
23 Choi S C, Yoon J, Shim W J, Ro Y M, Lim D S (2004). 5-azacytidine induces cardiac differentiation of P19 embryonic stem cells. Exp Mol Med, 36(6): 515–523
https://doi.org/10.1038/emm.2004.66 pmid: 15665584
24 Chong J J, Yang X, Don C W, Minami E, Liu Y W, Weyers J J, Mahoney W M, Van Biber B, Cook S M, Palpant N J, Gantz J A, Fugate J A, Muskheli V, Gough G M, Vogel K W, Astley C A, Hotchkiss C E, Baldessari A, Pabon L, Reinecke H, Gill E A, Nelson V, Kiem H P, Laflamme M A, Murry C E (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510(7504): 273–277
https://doi.org/10.1038/nature13233 pmid: 24776797
25 Chow M, Boheler K R, Li R A (2013a). Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Ther, 4(4): 97
https://doi.org/10.1186/scrt308 pmid: 23953772
26 Chow M Z, Geng L, Kong C W, Keung W, Fung J C, Boheler K R, Li R A (2013b). Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth. Stem Cells Dev, 22(19): 2678–2690
https://doi.org/10.1089/scd.2013.0125 pmid: 23656529
27 Cohen S M (2014). Everything old is new again: (linc)RNAs make proteins! EMBO J, 33(9): 937–938
https://doi.org/10.1002/embj.201488303 pmid: 24719208
28 Cohn J N, Ferrari R, Sharpe N (2000). Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol, 35(3): 569–582
https://doi.org/10.1016/S0735-1097(99)00630-0 pmid: 10716457
29 Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis S E, Minchiotti G, Cobellis G (2014). Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res, 12(2): 323–337
https://doi.org/10.1016/j.scr.2013.11.008 pmid: 24365598
30 Dimmeler S, Zeiher A M, Schneider M D (2005). Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest, 115(3): 572–583
https://doi.org/10.1172/JCI200524283 pmid: 15765139
31 Djebali S, Davis C A, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov G K, Khatun J, Williams B A, Zaleski C, Rozowsky J, R?der M, Kokocinski F, Abdelhamid R F, Alioto T, Antoshechkin I, Baer M T, Bar N S, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood M J, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo O J, Park E, Persaud K, Preall J B, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L H, Shahab A, Skancke J, Suzuki A M, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis S E, Hannon G, Giddings M C, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras T R (2012). Landscape of transcription in human cells. Nature, 489(7414): 101–108
https://doi.org/10.1038/nature11233 pmid: 22955620
32 Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall T J, Delphin E S, Zhang C (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem, 284(43): 29514–29525
https://doi.org/10.1074/jbc.M109.027896 pmid: 19706597
33 Dubois N C, Craft A M, Sharma P, Elliott D A, Stanley E G, Elefanty A G, Gramolini A, Keller G (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol, 29(11): 1011–1018
https://doi.org/10.1038/nbt.2005 pmid: 22020386
34 ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414): 57–74
https://doi.org/10.1038/nature11247 pmid: 22955616
35 Fan D, Takawale A, Lee J, Kassiri Z (2012). Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair, 5(1): 15
https://doi.org/10.1186/1755-1536-5-15 pmid: 22943504
36 Felician G, Collesi C, Lusic M, Martinelli V, Ferro M D, Zentilin L, Zacchigna S, Giacca M (2014). Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res, 115(7): 636–649
https://doi.org/10.1161/CIRCRESAHA.115.304517 pmid: 25114098
37 Feng Y, Wang J, Asher S, Hoang L, Guardiani C, Ivanov I, Zheng Y G (2011). Histone H4 acetylation differentially modulates arginine methylation by an in Cis mechanism. J Biol Chem, 286(23): 20323–20334
https://doi.org/10.1074/jbc.M110.207258 pmid: 21502321
38 Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella G D, Leosco D, Bonaduce D (2014). β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol, 4: 396
https://doi.org/10.3389/fphys.2013.00396 pmid: 24409150
39 Fisher C L, Fisher A G (2011). Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev, 21(2): 140–146
https://doi.org/10.1016/j.gde.2011.01.015 pmid: 21316216
40 Fu J D, Rushing S N, Lieu D K, Chan C W, Kong C W, Geng L, Wilson K D, Chiamvimonvat N, Boheler K R, Wu J C, Keller G, Hajjar R J, Li R A (2011). Distinct roles of microRNA-1 and-499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One, 6(11): e27417
https://doi.org/10.1371/journal.pone.0027417 pmid: 22110643
41 Fukushige S, Kondo E, Horii A (2008). Methyl-CpG targeted transcriptional activation allows re-expression of tumor suppressor genes in human cancer cells. Biochem Biophys Res Commun, 377(2): 600–605
https://doi.org/10.1016/j.bbrc.2008.10.016 pmid: 18929535
42 Gadue P, Huber T L, Paddison P J, Keller G M (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A, 103(45): 16806–16811
https://doi.org/10.1073/pnas.0603916103 pmid: 17077151
43 Gafni O, Weinberger L, Mansour A A, Manor Y S, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna J H (2013). Derivation of novel human ground state naive pluripotent stem cells. Nature, 504(7479): 282–286
https://doi.org/10.1038/nature12745 pmid: 24172903
44 Gepstein L, Ding C, Rahmutula D, Wilson E E, Yankelson L, Caspi O, Gepstein A, Huber I, Olgin J E (2010). In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells, 28(12): 2151–2161
https://doi.org/10.1002/stem.545 pmid: 20960511
45 Gopalakrishnan S, Van Emburgh B O, Robertson K D (2008). DNA methylation in development and human disease. Mutat Res, 647(1-2): 30–38
https://doi.org/10.1016/j.mrfmmm.2008.08.006 pmid: 18778722
46 Graichen R, Xu X, Braam S R, Balakrishnan T, Norfiza S, Sieh S, Soo S Y, Tham S C, Mummery C, Colman A, Zweigerdt R, Davidson B P (2008). Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 76(4): 357–370
https://doi.org/10.1111/j.1432-0436.2007.00236.x pmid: 18021257
47 Grote P, Herrmann B G (2013). The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol, 10(10): 1579–1585
https://doi.org/10.4161/rna.26165 pmid: 24036695
48 Grote P, Wittler L, Hendrix D, Koch F, W?hrisch S, Beisaw A, Macura K, Bl?ss G, Kellis M, Werber M, Herrmann B G (2013). The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell, 24(2): 206–214
https://doi.org/10.1016/j.devcel.2012.12.012 pmid: 23369715
49 Gu Y, Liu G H, Plongthongkum N, Benner C, Yi F, Qu J, Suzuki K, Yang J, Zhang W, Li M, Montserrat N, Crespo I, Del Sol A, Esteban C R, Zhang K, Izpisua Belmonte J C (2014). Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell, 5(1): 59–68
https://doi.org/10.1007/s13238-013-0016-x pmid: 24474197
50 Guo J U, Su Y, Shin J H, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming G L, Song H (2014). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci, 17(2): 215–222
https://doi.org/10.1038/nn.3607 pmid: 24362762
51 Gupta M K, Rao T N (2014). Hearty miR-363 controls HAND1 in cardiac cell specification. Stem Cell Res Ther, 5(4): 89
https://doi.org/10.1186/scrt478 pmid: 25157599
52 Haas J, Frese K S, Park Y J, Keller A, Vogel B, Lindroth A M, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, K?hler D, Wolf N M, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz J H, D?sch A, Mereles D, Hardt S, Backs J, Hoheisel J D, Plass C, Katus H A, Meder B (2013). Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med, 5(3): 413–429
https://doi.org/10.1002/emmm.201201553 pmid: 23341106
53 Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, Maier L S, Han D W, Glage S, Miller K, Fischer P, Sch?ler H R, Martin U (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5(4): 434–441
https://doi.org/10.1016/j.stem.2009.08.021 pmid: 19796623
54 Halbach M, Pfannkuche K, Pillekamp F, Ziomka A, Hannes T, Reppel M, Hescheler J, Müller-Ehmsen J (2007). Electrophysiological maturation and integration of murine fetal cardiomyocytes after transplantation. Circ Res, 101(5): 484–492
https://doi.org/10.1161/CIRCRESAHA.107.153643 pmid: 17641227
55 Han P, Li W, Lin C H, Yang J, Shang C, Nurnberg S T, Jin K K, Xu W, Lin C Y, Lin C J, Xiong Y, Chien H C, Zhou B, Ashley E, Bernstein D, Chen P S, Chen H S, Quertermous T, Chang C P (2014). A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 514(7520): 102–106
https://doi.org/10.1038/nature13596 pmid: 25119045
56 Handy D E, Castro R, Loscalzo J (2011). Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation, 123(19): 2145–2156
https://doi.org/10.1161/CIRCULATIONAHA.110.956839 pmid: 21576679
57 Hang C T, Yang J, Han P, Cheng H L, Shang C, Ashley E, Zhou B, Chang C P (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466(7302): 62–67
https://doi.org/10.1038/nature09130 pmid: 20596014
58 Hanna J, Cheng A W, Saha K, Kim J, Lengner C J, Soldner F, Cassady J P, Muffat J, Carey B W, Jaenisch R (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A, 107(20): 9222–9227
https://doi.org/10.1073/pnas.1004584107 pmid: 20442331
59 Hansen T B, Jensen T I, Clausen B H, Bramsen J B, Finsen B, Damgaard C K, Kjems J (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441): 384–388
https://doi.org/10.1038/nature11993 pmid: 23446346
60 Hattori F, Chen H, Yamashita H, Tohyama S, Satoh Y S, Yuasa S, Li W, Yamakawa H, Tanaka T, Onitsuka T, Shimoji K, Ohno Y, Egashira T, Kaneda R, Murata M, Hidaka K, Morisaki T, Sasaki E, Suzuki T, Sano M, Makino S, Oikawa S, Fukuda K (2010). Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods, 7(1): 61–66
https://doi.org/10.1038/nmeth.1403 pmid: 19946277
61 Henning R J (2011). Stem cells in cardiac repair. Future Cardiol, 7(1): 99–117
https://doi.org/10.2217/fca.10.109 pmid: 21174514
62 Hirt M N, Boeddinghaus J, Mitchell A, Schaaf S, B?rnchen C, Müller C, Schulz H, Hubner N, Stenzig J, Stoehr A, Neuber C, Eder A, Luther P K, Hansen A, Eschenhagen T (2014). Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol, 74: 151–161
https://doi.org/10.1016/j.yjmcc.2014.05.009 pmid: 24852842
63 Ho L, Crabtree G R (2010). Chromatin remodelling during development. Nature, 463(7280): 474–484
https://doi.org/10.1038/nature08911 pmid: 20110991
64 Hoekstra M, van der Lans C A, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel T J C, Biessen E A L (2010). The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun, 394(3): 792–797
https://doi.org/10.1016/j.bbrc.2010.03.075 pmid: 20230787
65 Horrillo A, Pezzolla D, Fraga M F, Aguilera Y, Salguero-Aranda C, Tejedo J R, Martin F, Bedoya F J, Soria B, Hmadcha A (2013). Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis, 4(4): e570
https://doi.org/10.1038/cddis.2013.88 pmid: 23559004
66 Horton R E, Millman J R, Colton C K, Auguste D T (2009). Engineering microenvironments for embryonic stem cell differentiation to cardiomyocytes. Regen Med, 4(5): 721–732
https://doi.org/10.2217/rme.09.48 pmid: 19761397
67 Hough S R, Laslett A L, Grimmond S B, Kolle G, Pera M F (2009). A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS One, 4(11): e7708
https://doi.org/10.1371/journal.pone.0007708 pmid: 19890402
68 Huang V, Li L C (2012). miRNA goes nuclear. RNA Biol, 9(3): 269–273
https://doi.org/10.4161/rna.19354 pmid: 22336708
69 Huang Z P, Chen J, Seok H Y, Zhang Z, Kataoka M, Hu X, Wang D Z (2013). MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res, 112(9): 1234–1243
https://doi.org/10.1161/CIRCRESAHA.112.300682 pmid: 23524588
70 Ikeda S, Kong S W, Lu J, Bisping E, Zhang H, Allen P D, Golub T R, Pieske B, Pu W T (2007). Altered microRNA expression in human heart disease. Physiol Genomics, 31(3): 367–373
https://doi.org/10.1152/physiolgenomics.00144.2007 pmid: 17712037
71 Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet, 51(12): 1087–1099
https://doi.org/10.1007/s10038-006-0070-9 pmid: 17066261
72 Jaguszewski M, Osipova J, Ghadri J R, Napp L C, Widera C, Franke J, Fijalkowski M, Nowak R, Fijalkowska M, Volkmann I, Katus H A, Wollert K C, Bauersachs J, Erne P, Lüscher T F, Thum T, Templin C (2014). A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J, 35(15): 999–1006
https://doi.org/10.1093/eurheartj/eht392 pmid: 24046434
73 Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080
https://doi.org/10.1126/science.1063127 pmid: 11498575
74 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
https://doi.org/10.1126/science.1225829 pmid: 22745249
75 Karamboulas C, Swedani A, Ward C, Al-Madhoun A S, Wilton S, Boisvenue S, Ridgeway A G, Skerjanc I S (2006). HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci, 119(Pt 20): 4305–4314
https://doi.org/10.1242/jcs.03185 pmid: 17038545
76 Kattman S J, Witty A D, Gagliardi M, Dubois N C, Niapour M, Hotta A, Ellis J, Keller G (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8(2): 228–240
https://doi.org/10.1016/j.stem.2010.12.008 pmid: 21295278
77 Kavi H H, Birchler J A (2009). Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics Chromatin, 2(1): 15
https://doi.org/10.1186/1756-8935-2-15 pmid: 19917092
78 Kawamura T, Ono K, Morimoto T, Wada H, Hirai M, Hidaka K, Morisaki T, Heike T, Nakahata T, Kita T, Hasegawa K (2005). Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J Biol Chem, 280(20): 19682–19688
https://doi.org/10.1074/jbc.M412428200 pmid: 15764815
79 Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 108(3): 407–414
https://doi.org/10.1172/JCI200112131 pmid: 11489934
80 Kehat I, Molkentin J D (2010). Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25): 2727–2735
https://doi.org/10.1161/CIRCULATIONAHA.110.942268 pmid: 21173361
81 Kim D H, Saetrom P, Sn?ve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A, 105(42): 16230–16235
https://doi.org/10.1073/pnas.0808830105 pmid: 18852463
82 Kim D H, Villeneuve L M, Morris K V, Rossi J J (2006). Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol, 13(9): 793–797
https://doi.org/10.1038/nsmb1142 pmid: 16936726
83 Kim J K, Samaranayake M, Pradhan S (2009). Epigenetic mechanisms in mammals. Cell Mol Life Sci, 66(4): 596–612
https://doi.org/10.1007/s00018-008-8432-4 pmid: 18985277
84 Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee M J, Ji H, Ehrlich L I R, Yabuuchi A, Takeuchi A, Cunniff K C, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon T J, Irizarry R A, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin S H, Weissman I L, Feinberg A P, Daley G Q (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313): 285–290
https://doi.org/10.1038/nature09342 pmid: 20644535
85 Klattenhoff C A, Scheuermann J C, Surface L E, Bradley R K, Fields P A, Steinhauser M L, Ding H, Butty V L, Torrey L, Haas S, Abo R, Tabebordbar M, Lee R T, Burge C B, Boyer L A (2013). Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 152(3): 570–583
https://doi.org/10.1016/j.cell.2013.01.003 pmid: 23352431
86 Kohli R M, Zhang Y (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472): 472–479
https://doi.org/10.1038/nature12750 pmid: 24153300
87 Koitabashi N, Kass D A (2012). Reverse remodeling in heart failure—mechanisms and therapeutic opportunities. Nat Rev Cardiol, 9(3): 147–157
https://doi.org/10.1038/nrcardio.2011.172 pmid: 22143079
88 Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, Manzke O, Bloch W, Bohlen H, Hescheler J, Fleischmann B K (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J, 19(6): 577–579
pmid: 15659535
89 Krenning G, Zeisberg E M, Kalluri R (2010). The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol, 225(3): 631–637
https://doi.org/10.1002/jcp.22322 pmid: 20635395
90 Kreutziger K L, Muskheli V, Johnson P, Braun K, Wight T N, Murry C E (2011). Developing vasculature and stroma in engineered human myocardium. Tissue Eng Part A, 17(9-10): 1219–1228
https://doi.org/10.1089/ten.tea.2010.0557 pmid: 21187004
91 Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T (2014). Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res, 114(10): 1569–1575
https://doi.org/10.1161/CIRCRESAHA.114.303915 pmid: 24663402
92 Laflamme M A, Chen K Y, Naumova A V, Muskheli V, Fugate J A, Dupras S K, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill E A, Ueno S, Yuan C, Gold J, Murry C E (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 25(9): 1015–1024
https://doi.org/10.1038/nbt1327 pmid: 17721512
93 Laflamme M A, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry C E (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol, 167(3): 663–671
https://doi.org/10.1016/S0002-9440(10)62041-X pmid: 16127147
94 Laflamme M A, Murry C E (2005). Regenerating the heart. Nat Biotechnol, 23(7): 845–856
https://doi.org/10.1038/nbt1117 pmid: 16003373
95 Laflamme M A, Murry C E (2011). Heart regeneration. Nature, 473(7347): 326–335
https://doi.org/10.1038/nature10147 pmid: 21593865
96 Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong C T, Low H M, Kin Sung K W, Rigoutsos I, Loring J, Wei C L (2010). Dynamic changes in the human methylome during differentiation. Genome Res, 20(3): 320–331
https://doi.org/10.1101/gr.101907.109 pmid: 20133333
97 Leri A, Kajstura J, Anversa P (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res, 109(8): 941–961
https://doi.org/10.1161/CIRCRESAHA.111.243154 pmid: 21960726
98 Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L (2010). Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A, 16(1): 115–125
https://doi.org/10.1089/ten.tea.2009.0130 pmid: 19642856
99 Li X, Wang J, Jia Z, Cui Q, Zhang C, Wang W, Chen P, Ma K, Zhou C (2013). MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS One, 8(9): e74504
https://doi.org/10.1371/journal.pone.0074504 pmid: 24040263
100 Lian X, Zhang J, Azarin S M, Zhu K, Hazeltine L B, Bao X, Hsiao C, Kamp T J, Palecek S P (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc, 8(1): 162–175
https://doi.org/10.1038/nprot.2012.150 pmid: 23257984
101 Lin Z, Pu WT (2014). Strategies for cardiac regeneration and repair. Sci Transl Med, 6: 239rv231
102 Lindsley R C, Gill J G, Kyba M, Murphy T L, Murphy K M (2006). Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development, 133(19): 3787–3796
https://doi.org/10.1242/dev.02551 pmid: 16943279
103 Lu T Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L (2013). Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun, 4: 2307
https://doi.org/10.1038/ncomms3307 pmid: 23942048
104 Luco R F, Allo M, Schor I E, Kornblihtt A R, Misteli T (2011). Epigenetics in alternative pre-mRNA splicing. Cell, 144(1): 16–26
https://doi.org/10.1016/j.cell.2010.11.056 pmid: 21215366
105 Luger K, M?der A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260
https://doi.org/10.1038/38444 pmid: 9305837
106 Majumdar G, Johnson I M, Kale S, Raghow R (2008). Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. Mol Cell Biochem, 312(1-2): 47–60
https://doi.org/10.1007/s11010-008-9720-x pmid: 18292970
107 Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart A F, Smith A, Stunnenberg H G (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell, 149(3): 590–604
https://doi.org/10.1016/j.cell.2012.03.026 pmid: 22541430
108 Matkovich S J, Edwards J R, Grossenheider T C, de Guzman Strong C, Dorn G W 2nd (2014). Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A, 111(33): 12264–12269
https://doi.org/10.1073/pnas.1410622111 pmid: 25071214
109 Nature Methods editorial (2012). Method of the Year 2011. Nat Methods, 9(1): 1
https://doi.org/10.1038/nmeth.1852 pmid: 22312634
110 Miyamoto S, Kawamura T, Morimoto T, Ono K, Wada H, Kawase Y, Matsumori A, Nishio R, Kita T, Hasegawa K (2006). Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation, 113(5): 679–690
https://doi.org/10.1161/CIRCULATIONAHA.105.585182 pmid: 16461841
111 Movassagh M, Choy M K, Goddard M, Bennett M R, Down T A, Foo R S (2010). Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One, 5(1): e8564
https://doi.org/10.1371/journal.pone.0008564 pmid: 20084101
112 Movassagh M, Choy M K, Knowles D A, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett M R, Foo R S Y (2011). Distinct epigenomic features in end-stage failing human hearts. Circulation, 124(22): 2411–2422
https://doi.org/10.1161/CIRCULATIONAHA.111.040071 pmid: 22025602
113 Mujtaba S, Zeng L, Zhou M M (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene, 26(37): 5521–5527
https://doi.org/10.1038/sj.onc.1210618 pmid: 17694091
114 Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere A B, Passier R, Tertoolen L (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107(21): 2733–2740
https://doi.org/10.1161/01.CIR.0000068356.38592.68 pmid: 12742992
115 Naito A T, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A, 103(52): 19812–19817
https://doi.org/10.1073/pnas.0605768103 pmid: 17170140
116 Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita J K (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118(5): 498–506
https://doi.org/10.1161/CIRCULATIONAHA.108.769562 pmid: 18625891
117 Ng S Y, Wong C K, Tsang S Y (2010). Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol, 299(6): C1234–C1249
https://doi.org/10.1152/ajpcell.00402.2009 pmid: 20844252
118 Nie L, Wu H J, Hsu J M, Chang S S, Labaff A M, Li C W, Wang Y, Hsu J L, Hung M C (2012). Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res, 4(2): 127–150
pmid: 22611467
119 Nissim L, Perli S D, Fridkin A, Perez-Pinera P, Lu T K (2014). Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell, 54(4): 698–710
https://doi.org/10.1016/j.molcel.2014.04.022 pmid: 24837679
120 Nunes S S, Miklas J W, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme M A, Nanthakumar K, Gross G J, Backx P H, Keller G, Radisic M (2013). Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods, 10(8): 781–787
https://doi.org/10.1038/nmeth.2524 pmid: 23793239
121 Nussbaum J, Minami E, Laflamme M A, Virag J A, Ware C B, Masino A, Muskheli V, Pabon L, Reinecke H, Murry C E (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J, 21(7): 1345–1357
https://doi.org/10.1096/fj.06-6769com pmid: 17284483
122 Osafune K, Caron L, Borowiak M, Martinez R J, Fitz-Gerald C S, Sato Y, Cowan C A, Chien K R, Melton D A (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol, 26(3): 313–315
https://doi.org/10.1038/nbt1383 pmid: 18278034
123 Paige S L, Thomas S, Stoick-Cooper C L, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, Moon R T, Stamatoyannopoulos J, Murry C E (2012). A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell, 151(1): 221–232
https://doi.org/10.1016/j.cell.2012.08.027 pmid: 22981225
124 Papait R, Condorelli G (2010). Epigenetics in heart failure. Ann N Y Acad Sci, 1188(1): 159–164
https://doi.org/10.1111/j.1749-6632.2009.05096.x pmid: 20201899
125 Papait R, Kunderfranco P, Stirparo G G, Latronico M V, Condorelli G (2013). Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res, 6(6): 876–883
https://doi.org/10.1007/s12265-013-9488-6 pmid: 23835777
126 Pascut F C, Goh H T, George V, Denning C, Notingher I (2011). Toward label-free Raman-activated cell sorting of cardiomyocytes derived from human embryonic stem cells. J Biomed Opt, 16(4): 045002
https://doi.org/10.1117/1.3570302 pmid: 21529069
127 Passier R, van Laake L W, Mummery C L (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193): 322–329
https://doi.org/10.1038/nature07040 pmid: 18480813
128 Porrello E R, Mahmoud A I, Simpson E, Hill J A, Richardson J A, Olson E N, Sadek H A (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020): 1078–1080
https://doi.org/10.1126/science.1200708 pmid: 21350179
129 Radisic M, Christman K L (2013). Materials science and tissue engineering: repairing the heart. Mayo Clin Proc, 88(8): 884–898
https://doi.org/10.1016/j.mayocp.2013.05.003 pmid: 23910415
130 Rai M, Walthall J M, Hu J, Hatzopoulos A K (2012). Continuous antagonism by Dkk1 counter activates canonical Wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells. Stem Cells Dev, 21(1): 54–66
https://doi.org/10.1089/scd.2011.0326 pmid: 21861760
131 Rajala K, Pekkanen-Mattila M, Aalto-Set?l? K (2011). Cardiac differentiation of pluripotent stem cells. Stem Cells Int, 2011: 383709
https://doi.org/10.4061/2011/383709 pmid: 21603143
132 Reinecke H, Zhang M, Bartosek T, Murry C E (1999). Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation, 100(2): 193–202
https://doi.org/10.1161/01.CIR.100.2.193 pmid: 10402450
133 Reisman D, Glaros S, Thompson E A (2009). The SWI/SNF complex and cancer. Oncogene, 28(14): 1653–1668
https://doi.org/10.1038/onc.2009.4 pmid: 19234488
134 Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D, Behrens A, Bertone P, Hendrich B (2012). NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J, 31(3): 593–605
https://doi.org/10.1038/emboj.2011.431 pmid: 22139358
135 Rizzi R, Di Pasquale E, Portararo P, Papait R, Cattaneo P, Latronico M V, Altomare C, Sala L, Zaza A, Hirsch E, Naldini L, Condorelli G, Bearzi C (2012). Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death Differ, 19(7): 1162–1174
https://doi.org/10.1038/cdd.2011.205 pmid: 22261617
136 Robertson K D (2005). DNA methylation and human disease. Nat Rev Genet, 6(8): 597–610
https://doi.org/10.1038/nrg1655 pmid: 16136652
137 Robey T E, Saiget M K, Reinecke H, Murry C E (2008). Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol, 45(4): 567–581
https://doi.org/10.1016/j.yjmcc.2008.03.009 pmid: 18466917
138 Rubart M, Pasumarthi K B, Nakajima H, Soonpaa M H, Nakajima H O, Field L J (2003). Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ Res, 92(11): 1217–1224
https://doi.org/10.1161/01.RES.0000075089.39335.8C pmid: 12730096
139 Salmanidis M, Pillman K, Goodall G, Bracken C (2014). Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol, 54: 304–311
https://doi.org/10.1016/j.biocel.2014.03.010 pmid: 24680896
140 Sanchez-Freire V, Lee A S, Hu S, Abilez O J, Liang P, Lan F, Huber B C, Ong S G, Hong W X, Huang M, Wu J C (2014). Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol, 64(5): 436–448
https://doi.org/10.1016/j.jacc.2014.04.056 pmid: 25082575
141 Santillan D A, Theisler C M, Ryan A S, Popovic R, Stuart T, Zhou M M, Alkan S, Zeleznik-Le N J (2006). Bromodomain and histone acetyltransferase domain specificities control mixed lineage leukemia phenotype. Cancer Res, 66(20): 10032–10039
https://doi.org/10.1158/0008-5472.CAN-06-2597 pmid: 17047066
142 Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419(6905): 407–411
https://doi.org/10.1038/nature01080 pmid: 12353038
143 Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D (2008). Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol, 28(8): 2718–2731
https://doi.org/10.1128/MCB.02017-07 pmid: 18285464
144 Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi M E (2007). Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells, 25(5): 1136–1144
https://doi.org/10.1634/stemcells.2006-0466 pmid: 17255522
145 Segers V F, Lee R T (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181): 937–942
https://doi.org/10.1038/nature06800 pmid: 18288183
146 Senyo S E, Steinhauser M L, Pizzimenti C L, Yang V K, Cai L, Wang M, Wu T D, Guerquin-Kern J L, Lechene C P, Lee R T (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432): 433–436
https://doi.org/10.1038/nature11682 pmid: 23222518
147 Sera T (2009). Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev, 61(7-8): 513–526
https://doi.org/10.1016/j.addr.2009.03.012 pmid: 19394375
148 Shiba Y, Fernandes S, Zhu W Z, Filice D, Muskheli V, Kim J, Palpant N J, Gantz J, Moyes K W, Reinecke H, Van Biber B, Dardas T, Mignone J L, Izawa A, Hanna R, Viswanathan M, Gold J D, Kotlikoff M I, Sarvazyan N, Kay M W, Murry C E, Laflamme M A (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415): 322–325
https://doi.org/10.1038/nature11317 pmid: 22864415
149 Shiba Y, Hauch K D, Laflamme M A (2009). Cardiac applications for human pluripotent stem cells. Curr Pharm Des, 15(24): 2791–2806
https://doi.org/10.2174/138161209788923804 pmid: 19689350
150 Shilatifard A (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem, 75(1): 243–269
https://doi.org/10.1146/annurev.biochem.75.103004.142422 pmid: 16756492
151 Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol, 285(6): H2355–H2363
pmid: 14613910
152 Sondermeijer B M, Bakker A, Halliani A, de Ronde M W, Marquart A A, Tijsen A J, Mulders T A, Kok M G M, Battjes S, Maiwald S, Sivapalaratnam S, Trip M D, Moerland P D, Meijers J C M, Creemers E E, Pinto-Sietsma S J (2011). Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS One, 6(10): e25946
https://doi.org/10.1371/journal.pone.0025946 pmid: 22022480
153 Stein A B, Jones T A, Herron T J, Patel S R, Day S M, Noujaim S F, Milstein M L, Klos M, Furspan P B, Jalife J, Dressler G R (2011). Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest, 121(7): 2641–2650
https://doi.org/10.1172/JCI44641 pmid: 21646717
154 Stevens K R, Kreutziger K L, Dupras S K, Korte F S, Regnier M, Muskheli V, Nourse M B, Bendixen K, Reinecke H, Murry C E (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A, 106(39): 16568–16573
https://doi.org/10.1073/pnas.0908381106 pmid: 19805339
155 Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen S E (2011). 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol, 12(6): R54
https://doi.org/10.1186/gb-2011-12-6-r54 pmid: 21689397
156 Sucharov C, Bristow M R, Port J D (2008). miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol, 45(2): 185–192
https://doi.org/10.1016/j.yjmcc.2008.04.014 pmid: 18582896
157 Sullivan G J, Bai Y, Fletcher J, Wilmut I (2010). Induced pluripotent stem cells: epigenetic memories and practical implications. Mol Hum Reprod, 16(12): 880–885
https://doi.org/10.1093/molehr/gaq091 pmid: 21059705
158 Takaya T, Ono K, Kawamura T, Takanabe R, Kaichi S, Morimoto T, Wada H, Kita T, Shimatsu A, Hasegawa K (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ J, 73(8): 1492–1497
https://doi.org/10.1253/circj.CJ-08-1032 pmid: 19521018
159 Tanasijevic B, Dai B, Ezashi T, Livingston K, Roberts R M, Rasmussen T P (2009). Progressive accumulation of epigenetic heterogeneity during human ES cell culture. Epigenetics, 4(5): 330–338
https://doi.org/10.4161/epi.4.5.9275 pmid: 19571681
160 Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, Hashimoto H, Suzuki T, Yamashita H, Satoh Y, Egashira T, Seki T, Muraoka N, Yamakawa H, Ohgino Y, Tanaka T, Yoichi M, Yuasa S, Murata M, Suematsu M, Fukuda K (2013). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12(1): 127–137
https://doi.org/10.1016/j.stem.2012.09.013 pmid: 23168164
161 Tompkins J D, Hall C, Chen V C, Li A X, Wu X, Hsu D, Couture L A, Riggs A D (2012). Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A, 109(31): 12544–12549
https://doi.org/10.1073/pnas.1209620109 pmid: 22802633
162 Trivedi C M, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger P R, Wurst W, Ferrari V A, Abrams C S, Gruber P J, Epstein J A (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med, 13(3): 324–331
https://doi.org/10.1038/nm1552 pmid: 17322895
163 Tsai M C, Manor O, Wan Y, Mosammaparast N, Wang J K, Lan F, Shi Y, Segal E, Chang H Y (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992): 689–693
https://doi.org/10.1126/science.1192002 pmid: 20616235
164 Tulloch N L, Muskheli V, Razumova M V, Korte F S, Regnier M, Hauch K D, Pabon L, Reinecke H, Murry C E (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res, 109(1): 47–59
https://doi.org/10.1161/CIRCRESAHA.110.237206 pmid: 21597009
165 Ueno S, Weidinger G, Osugi T, Kohn A D, Golob J L, Pabon L, Reinecke H, Moon R T, Murry C E (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A, 104(23): 9685–9690
https://doi.org/10.1073/pnas.0702859104 pmid: 17522258
166 Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita J K (2011). Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One, 6(8): e23657
https://doi.org/10.1371/journal.pone.0023657 pmid: 21876760
167 Van Hoof D, Dormeyer W, Braam S R, Passier R, Monshouwer-Kloots J, Ward-van Oostwaard D, Heck A J R, Krijgsveld J, Mummery C L (2010). Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res, 9(3): 1610–1618
https://doi.org/10.1021/pr901138a pmid: 20088484
168 van Rooij E, Sutherland L B, Liu N, Williams A H, McAnally J, Gerard R D, Richardson J A, Olson E N (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A, 103(48): 18255–18260
https://doi.org/10.1073/pnas.0608791103 pmid: 17108080
169 Verheugt C L, Uiterwaal C S, van der Velde E T, Meijboom F J, Pieper P G, van Dijk A P, Vliegen H W, Grobbee D E, Mulder B J M (2010). Mortality in adult congenital heart disease. Eur Heart J, 31(10): 1220–1229
https://doi.org/10.1093/eurheartj/ehq032 pmid: 20207625
170 Voigt P, LeRoy G, Drury W J 3rd, Zee B M, Son J, Beck D B, Young N L, Garcia B A, Reinberg D (2012). Asymmetrically modified nucleosomes. Cell, 151(1): 181–193
https://doi.org/10.1016/j.cell.2012.09.002 pmid: 23021224
171 Wamstad J A, Alexander J M, Truty R M, Shrikumar A, Li F, Eilertson K E, Ding H, Wylie J N, Pico A R, Capra J A, Erwin G, Kattman S J, Keller G M, Srivastava D, Levine S S, Pollard K S, Holloway A K, Boyer L A, Bruneau B G (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell, 151(1): 206–220
https://doi.org/10.1016/j.cell.2012.07.035 pmid: 22981692
172 Wang G K, Zhu J Q, Zhang J T, Li Q, Li Y, He J, Qin Y W, Jing Q (2010). Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 31(6): 659–666
https://doi.org/10.1093/eurheartj/ehq013 pmid: 20159880
173 Xu C, Police S, Rao N, Carpenter M K (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res, 91(6): 501–508
https://doi.org/10.1161/01.RES.0000035254.80718.91 pmid: 12242268
174 Xu H, Yi B A, Wu H, Bock C, Gu H, Lui K O, Park J H C, Shao Y, Riley A K, Domian I J, Hu E, Willette R, Lepore J, Meissner A, Wang Z, Chien K R (2012). Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res, 22(1): 142–154
https://doi.org/10.1038/cr.2011.171 pmid: 22064699
175 Xue T, Cho H C, Akar F G, Tsang S Y, Jones S P, Marbán E, Tomaselli G F, Li R A (2005). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 111(1): 11–20
https://doi.org/10.1161/01.CIR.0000151313.18547.A2 pmid: 15611367
176 Yang L, Soonpaa M H, Adler E D, Roepke T K, Kattman S J, Kennedy M, Henckaerts E, Bonham K, Abbott G W, Linden R M, Field L J, Keller G M (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453(7194): 524–528
https://doi.org/10.1038/nature06894 pmid: 18432194
177 Yang Y W, Flynn R A, Chen Y, Qu K, Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. Elife, 3: e02046
https://doi.org/10.7554/eLife.02046 pmid: 24521543
178 Yao C X, Wei Q X, Zhang Y Y, Wang W P, Xue L X, Yang F, Zhang S F, Xiong C J, Li W Y, Wei Z R, Zou Y, Zang M X (2013). miR-200b targets GATA-4 during cell growth and differentiation. RNA Biol, 10(4): 465–480
https://doi.org/10.4161/rna.24370 pmid: 23558708
179 Yi F F, Yang L, Li Y H, Su P X, Cai J, Yang X C (2009). Electrophysiological development of transplanted embryonic stem cell-derived cardiomyocytes in the hearts of syngeneic mice. Arch Med Res, 40(5): 339–344
https://doi.org/10.1016/j.arcmed.2009.06.005 pmid: 19766895
180 Yoon B S, Yoo S J, Lee J E, You S, Lee H T, Yoon H S (2006). Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 74(4): 149–159
https://doi.org/10.1111/j.1432-0436.2006.00063.x pmid: 16683985
181 Zaratiegui M, Irvine D V, Martienssen R A (2007). Noncoding RNAs and gene silencing. Cell, 128(4): 763–776
https://doi.org/10.1016/j.cell.2007.02.016 pmid: 17320512
182 Zhang C L, McKinsey T A, Chang S, Antos C L, Hill J A, Olson E N (2002a). Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell, 110(4): 479–488
https://doi.org/10.1016/S0092-8674(02)00861-9 pmid: 12202037
183 Zhang J, Klos M, Wilson G F, Herman A M, Lian X, Raval K K, Barron M R, Hou L, Soerens A G, Yu J, Palecek S P, Lyons G E, Thomson J A, Herron T J, Jalife J, Kamp T J (2012a). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res, 111(9): 1125–1136
https://doi.org/10.1161/CIRCRESAHA.112.273144 pmid: 22912385
184 Zhang L, Chen B, Zhao Y, Dubielecka P M, Wei L, Qin G J, Chin Y E, Wang Y, Zhao T C (2012b). Inhibition of histone deacetylase-induced myocardial repair is mediated by c-kit in infarcted hearts. J Biol Chem, 287(47): 39338–39348
https://doi.org/10.1074/jbc.M112.379115 pmid: 23024362
185 Zhang L, Qin X, Zhao Y, Fast L, Zhuang S, Liu P, Cheng G, Zhao T C (2012c). Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther, 341(1): 285–293
https://doi.org/10.1124/jpet.111.189910 pmid: 22271820
186 Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers D M, Maier L S, Olson E N, Brown J H (2007). CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem, 282(48): 35078–35087
https://doi.org/10.1074/jbc.M707083200 pmid: 17923476
187 Zhang Y M, Hartzell C, Narlow M, Dudley S C Jr (2002). Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation, 106(10): 1294–1299
https://doi.org/10.1161/01.CIR.0000027585.05868.67 pmid: 12208808
188 Zhu S, Hu X, Han S, Yu Z, Peng Y, Zhu J, Liu X, Qian L, Zhu C, Li M, Song G, Guo X (2014). Differential expression profile of long non-coding RNAs during differentiation of cardiomyocytes. Int J Med Sci, 11(5): 500–507
https://doi.org/10.7150/ijms.7849 pmid: 24688315
189 Zwi-Dantsis L, Gepstein L (2012). Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci, 69(19): 3285–3299
https://doi.org/10.1007/s00018-012-1078-2 pmid: 22960788
Related articles from Frontiers Journals
[1] Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri. How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?[J]. Front. Biol., 2017, 12(3): 183-191.
[2] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[3] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[4] Kyle R. Denton,Chongchong Xu,Harsh Shah,Xue-Jun Li. Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 339-354.
[5] Ying-Tao Zhao,Maria Fasolino,Zhaolan Zhou. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Front. Biol., 2016, 11(4): 311-322.
[6] Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
[7] Diana GUALLAR,Jianlong WANG. RNA-binding proteins in pluripotency, differentiation, and reprogramming[J]. Front. Biol., 2014, 9(5): 389-409.
[8] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[9] Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
[10] Qichao WANG, Xianmin ZHU, Yun FENG, Zhigang XUE, Guoping FAN. Single-cell genomics: An overview[J]. Front Biol, 2013, 8(6): 569-576.
[11] Bipasha MUKHERJEE-CLAVIN, Mark TOMISHIMA, Gabsang LEE. Current approaches for efficient genetic editing in human pluripotent stem cells[J]. Front Biol, 2013, 8(5): 461-467.
[12] Yiwei LIN, Binhua P. ZHOU. Histone mimics: digging down under[J]. Front Biol, 2013, 8(2): 228-233.
[13] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
[14] Feng C. ZHOU. DNA methylation program during development[J]. Front Biol, 2012, 7(6): 485-494.
[15] Weihua QIAO, Liumin FAN. Epigenetics, a mode for plants to respond to abiotic stresses[J]. Front Biol, 2011, 6(6): 477-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed