An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy

Joshua D. TOMPKINS, Arthur D. RIGGS

PDF(605 KB)
PDF(605 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (1) : 11-27. DOI: 10.1007/s11515-014-1340-0
REVIEW
REVIEW

An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy

Author information +
History +

Abstract

As life expectancy rises, the prevalence of heart failure is steadily increasing, while donors for organ transplantation remain in short supply (Zwi-Dantsis and Gepstein, 2012). Indeed, myocardial infarction represents the foremost cause of death within industrialized nations (Henning, 2011) and further, approximately 1% of all newborns harbor a congenital heart defect. Although medical interventions allow>80% of those with cardiac defects to survive to adulthood, there are often extreme emotional and financial burdens that accompany such congenital anomalies, and many individuals will remain at a heightened risk for myocardial infarction throughout the remainder of their lives (Verheugt et al., 2010; Amianto et al., 2011). In this review, we will discuss the nature of the failing heart and strategies for repair from an epigenetic standpoint. Significant focus will reside on pluripotent-to-cardiomyocyte differentiation for cell replacement, epigenetic mechanisms of cardiomyocyte differentiation, epigenetic “memories,” and epigenetic control of cardiomyocyte cell fate toward translational utility.

Keywords

heart failure / pluripotent / cardiomyocytes / epigenetics / DNA methylation / lncRNA

Cite this article

Download citation ▾
Joshua D. TOMPKINS, Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy. Front. Biol., 2015, 10(1): 11‒27 https://doi.org/10.1007/s11515-014-1340-0

References

[1]
Ahmed W, Ali I S, Riaz M, Younas A, Sadeque A, Niazi A K, Niazi S H, Ali S H B, Azam M, Qamar R (2013). Association of ANRIL polymorphism (rs1333049:C>G) with myocardial infarction and its pharmacogenomic role in hypercholesterolemia. Gene, 515(2): 416–420
CrossRef Pubmed Google scholar
[2]
Amianto F, Bergui G, Abbate-Daga G, Bellicanta A, Munno D, Fassino S (2011). Growing up with a congenital heart disease: neuro-cognitive, psychopathological and quality of life outcomes. Panminerva Med, 53(2): 109–127
Pubmed
[3]
Anderson D, Self T, Mellor I R, Goh G, Hill S J, Denning C (2007). Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther, 15(11): 2027–2036
CrossRef Pubmed Google scholar
[4]
Antos C L, McKinsey T A, Dreitz M, Hollingsworth L M, Zhang C L, Schreiber K, Rindt H, Gorczynski R J, Olson E N (2003). Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem, 278(31): 28930–28937
CrossRef Pubmed Google scholar
[5]
Arya G, Maitra A, Grigoryev S A (2010). A structural perspective on the where, how, why, and what of nucleosome positioning. J Biomol Struct Dyn, 27(6): 803–820
CrossRef Pubmed Google scholar
[6]
Awad S, Kunhi M, Little G H, Bai Y, An W, Bers D, Kedes L, Poizat C (2013). Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res, 41(16): 7656–7672
CrossRef Pubmed Google scholar
[7]
Backs J, Song K, Bezprozvannaya S, Chang S, Olson E N (2006). CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest, 116(7): 1853–1864
CrossRef Pubmed Google scholar
[8]
Bannister A J, Kouzarides T (2011). Regulation of chromatin by histone modifications. Cell Res, 21(3): 381–395
CrossRef Pubmed Google scholar
[9]
Bar-Nur O, Russ H A, Efrat S, Benvenisty N (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 9(1): 17–23
CrossRef Pubmed Google scholar
[10]
Bergmann O, Bhardwaj R D, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz B A, Druid H, Jovinge S, Frisén J (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923): 98–102
CrossRef Pubmed Google scholar
[11]
Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth R S, Avkiran M, Martin J L, Pogwizd S M, Bers D M (2008). Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res, 102(6): 695–702
CrossRef Pubmed Google scholar
[12]
Brito-Martins M, Harding S E, Ali N N (2008). beta(1)- and beta(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart. Br J Pharmacol, 153(4): 751–759
CrossRef Pubmed Google scholar
[13]
Brons I G, Smithers L E, Trotter M W, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes S M, Howlett S K, Clarkson A, Ahrlund-Richter L, Pedersen R A, Vallier L (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150): 191–195
CrossRef Pubmed Google scholar
[14]
Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957–1966
CrossRef Pubmed Google scholar
[15]
Cai Y, Geutjes E J, de Lint K, Roepman P, Bruurs L, Yu L R, Wang W, van Blijswijk J, Mohammad H, de Rink I, Bernards R, Baylin S B (2014). The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene, 33(17): 2157–2168
CrossRef Pubmed Google scholar
[16]
Carpenter L, Carr C, Yang C T, Stuckey D J, Clarke K, Watt S M (2012). Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev, 21(6): 977–986
CrossRef Pubmed Google scholar
[17]
Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007a). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol, 50(19): 1884–1893
CrossRef Pubmed Google scholar
[18]
Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib I H, Gepstein L, Levenberg S (2007b). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res, 100(2): 263–272
CrossRef Pubmed Google scholar
[19]
Chang S, McKinsey T A, Zhang C L, Richardson J A, Hill J A, Olson E N (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol, 24(19): 8467–8476
CrossRef Pubmed Google scholar
[20]
Chen J, Huang Z P, Seok H Y, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, Pu W T, Liao R, Wang D Z (2013). mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res, 112(12): 1557–1566
CrossRef Pubmed Google scholar
[21]
Chen T, Dent S Y (2014). Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet, 15(2): 93–106
CrossRef Pubmed Google scholar
[22]
Chimenti I, Gaetani R, Barile L, Forte E, Ionta V, Angelini F, Frati G, Messina E, Giacomello A (2012). Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol, 879: 327–338
CrossRef Pubmed Google scholar
[23]
Choi S C, Yoon J, Shim W J, Ro Y M, Lim D S (2004). 5-azacytidine induces cardiac differentiation of P19 embryonic stem cells. Exp Mol Med, 36(6): 515–523
CrossRef Pubmed Google scholar
[24]
Chong J J, Yang X, Don C W, Minami E, Liu Y W, Weyers J J, Mahoney W M, Van Biber B, Cook S M, Palpant N J, Gantz J A, Fugate J A, Muskheli V, Gough G M, Vogel K W, Astley C A, Hotchkiss C E, Baldessari A, Pabon L, Reinecke H, Gill E A, Nelson V, Kiem H P, Laflamme M A, Murry C E (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510(7504): 273–277
CrossRef Pubmed Google scholar
[25]
Chow M, Boheler K R, Li R A (2013a). Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Ther, 4(4): 97
CrossRef Pubmed Google scholar
[26]
Chow M Z, Geng L, Kong C W, Keung W, Fung J C, Boheler K R, Li R A (2013b). Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth. Stem Cells Dev, 22(19): 2678–2690
CrossRef Pubmed Google scholar
[27]
Cohen S M (2014). Everything old is new again: (linc)RNAs make proteins! EMBO J, 33(9): 937–938
CrossRef Pubmed Google scholar
[28]
Cohn J N, Ferrari R, Sharpe N (2000). Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol, 35(3): 569–582
CrossRef Pubmed Google scholar
[29]
Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis S E, Minchiotti G, Cobellis G (2014). Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res, 12(2): 323–337
CrossRef Pubmed Google scholar
[30]
Dimmeler S, Zeiher A M, Schneider M D (2005). Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest, 115(3): 572–583
CrossRef Pubmed Google scholar
[31]
Djebali S, Davis C A, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov G K, Khatun J, Williams B A, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid R F, Alioto T, Antoshechkin I, Baer M T, Bar N S, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood M J, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo O J, Park E, Persaud K, Preall J B, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L H, Shahab A, Skancke J, Suzuki A M, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis S E, Hannon G, Giddings M C, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras T R (2012). Landscape of transcription in human cells. Nature, 489(7414): 101–108
CrossRef Pubmed Google scholar
[32]
Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall T J, Delphin E S, Zhang C (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem, 284(43): 29514–29525
CrossRef Pubmed Google scholar
[33]
Dubois N C, Craft A M, Sharma P, Elliott D A, Stanley E G, Elefanty A G, Gramolini A, Keller G (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol, 29(11): 1011–1018
CrossRef Pubmed Google scholar
[34]
ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414): 57–74
CrossRef Pubmed Google scholar
[35]
Fan D, Takawale A, Lee J, Kassiri Z (2012). Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair, 5(1): 15
CrossRef Pubmed Google scholar
[36]
Felician G, Collesi C, Lusic M, Martinelli V, Ferro M D, Zentilin L, Zacchigna S, Giacca M (2014). Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res, 115(7): 636–649
CrossRef Pubmed Google scholar
[37]
Feng Y, Wang J, Asher S, Hoang L, Guardiani C, Ivanov I, Zheng Y G (2011). Histone H4 acetylation differentially modulates arginine methylation by an in Cis mechanism. J Biol Chem, 286(23): 20323–20334
CrossRef Pubmed Google scholar
[38]
Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella G D, Leosco D, Bonaduce D (2014). β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol, 4: 396
CrossRef Pubmed Google scholar
[39]
Fisher C L, Fisher A G (2011). Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev, 21(2): 140–146
CrossRef Pubmed Google scholar
[40]
Fu J D, Rushing S N, Lieu D K, Chan C W, Kong C W, Geng L, Wilson K D, Chiamvimonvat N, Boheler K R, Wu J C, Keller G, Hajjar R J, Li R A (2011). Distinct roles of microRNA-1 and-499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One, 6(11): e27417
CrossRef Pubmed Google scholar
[41]
Fukushige S, Kondo E, Horii A (2008). Methyl-CpG targeted transcriptional activation allows re-expression of tumor suppressor genes in human cancer cells. Biochem Biophys Res Commun, 377(2): 600–605
CrossRef Pubmed Google scholar
[42]
Gadue P, Huber T L, Paddison P J, Keller G M (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A, 103(45): 16806–16811
CrossRef Pubmed Google scholar
[43]
Gafni O, Weinberger L, Mansour A A, Manor Y S, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna J H (2013). Derivation of novel human ground state naive pluripotent stem cells. Nature, 504(7479): 282–286
CrossRef Pubmed Google scholar
[44]
Gepstein L, Ding C, Rahmutula D, Wilson E E, Yankelson L, Caspi O, Gepstein A, Huber I, Olgin J E (2010). In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells, 28(12): 2151–2161
CrossRef Pubmed Google scholar
[45]
Gopalakrishnan S, Van Emburgh B O, Robertson K D (2008). DNA methylation in development and human disease. Mutat Res, 647(1-2): 30–38
CrossRef Pubmed Google scholar
[46]
Graichen R, Xu X, Braam S R, Balakrishnan T, Norfiza S, Sieh S, Soo S Y, Tham S C, Mummery C, Colman A, Zweigerdt R, Davidson B P (2008). Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 76(4): 357–370
CrossRef Pubmed Google scholar
[47]
Grote P, Herrmann B G (2013). The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol, 10(10): 1579–1585
CrossRef Pubmed Google scholar
[48]
Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M, Herrmann B G (2013). The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell, 24(2): 206–214
CrossRef Pubmed Google scholar
[49]
Gu Y, Liu G H, Plongthongkum N, Benner C, Yi F, Qu J, Suzuki K, Yang J, Zhang W, Li M, Montserrat N, Crespo I, Del Sol A, Esteban C R, Zhang K, Izpisua Belmonte J C (2014). Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell, 5(1): 59–68
CrossRef Pubmed Google scholar
[50]
Guo J U, Su Y, Shin J H, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming G L, Song H (2014). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci, 17(2): 215–222
CrossRef Pubmed Google scholar
[51]
Gupta M K, Rao T N (2014). Hearty miR-363 controls HAND1 in cardiac cell specification. Stem Cell Res Ther, 5(4): 89
CrossRef Pubmed Google scholar
[52]
Haas J, Frese K S, Park Y J, Keller A, Vogel B, Lindroth A M, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Köhler D, Wolf N M, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz J H, Dösch A, Mereles D, Hardt S, Backs J, Hoheisel J D, Plass C, Katus H A, Meder B (2013). Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med, 5(3): 413–429
CrossRef Pubmed Google scholar
[53]
Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, Maier L S, Han D W, Glage S, Miller K, Fischer P, Schöler H R, Martin U (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5(4): 434–441
CrossRef Pubmed Google scholar
[54]
Halbach M, Pfannkuche K, Pillekamp F, Ziomka A, Hannes T, Reppel M, Hescheler J, Müller-Ehmsen J (2007). Electrophysiological maturation and integration of murine fetal cardiomyocytes after transplantation. Circ Res, 101(5): 484–492
CrossRef Pubmed Google scholar
[55]
Han P, Li W, Lin C H, Yang J, Shang C, Nurnberg S T, Jin K K, Xu W, Lin C Y, Lin C J, Xiong Y, Chien H C, Zhou B, Ashley E, Bernstein D, Chen P S, Chen H S, Quertermous T, Chang C P (2014). A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 514(7520): 102–106
CrossRef Pubmed Google scholar
[56]
Handy D E, Castro R, Loscalzo J (2011). Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation, 123(19): 2145–2156
CrossRef Pubmed Google scholar
[57]
Hang C T, Yang J, Han P, Cheng H L, Shang C, Ashley E, Zhou B, Chang C P (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466(7302): 62–67
CrossRef Pubmed Google scholar
[58]
Hanna J, Cheng A W, Saha K, Kim J, Lengner C J, Soldner F, Cassady J P, Muffat J, Carey B W, Jaenisch R (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A, 107(20): 9222–9227
CrossRef Pubmed Google scholar
[59]
Hansen T B, Jensen T I, Clausen B H, Bramsen J B, Finsen B, Damgaard C K, Kjems J (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441): 384–388
CrossRef Pubmed Google scholar
[60]
Hattori F, Chen H, Yamashita H, Tohyama S, Satoh Y S, Yuasa S, Li W, Yamakawa H, Tanaka T, Onitsuka T, Shimoji K, Ohno Y, Egashira T, Kaneda R, Murata M, Hidaka K, Morisaki T, Sasaki E, Suzuki T, Sano M, Makino S, Oikawa S, Fukuda K (2010). Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods, 7(1): 61–66
CrossRef Pubmed Google scholar
[61]
Henning R J (2011). Stem cells in cardiac repair. Future Cardiol, 7(1): 99–117
CrossRef Pubmed Google scholar
[62]
Hirt M N, Boeddinghaus J, Mitchell A, Schaaf S, Börnchen C, Müller C, Schulz H, Hubner N, Stenzig J, Stoehr A, Neuber C, Eder A, Luther P K, Hansen A, Eschenhagen T (2014). Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol, 74: 151–161
CrossRef Pubmed Google scholar
[63]
Ho L, Crabtree G R (2010). Chromatin remodelling during development. Nature, 463(7280): 474–484
CrossRef Pubmed Google scholar
[64]
Hoekstra M, van der Lans C A, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel T J C, Biessen E A L (2010). The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun, 394(3): 792–797
CrossRef Pubmed Google scholar
[65]
Horrillo A, Pezzolla D, Fraga M F, Aguilera Y, Salguero-Aranda C, Tejedo J R, Martin F, Bedoya F J, Soria B, Hmadcha A (2013). Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis, 4(4): e570
CrossRef Pubmed Google scholar
[66]
Horton R E, Millman J R, Colton C K, Auguste D T (2009). Engineering microenvironments for embryonic stem cell differentiation to cardiomyocytes. Regen Med, 4(5): 721–732
CrossRef Pubmed Google scholar
[67]
Hough S R, Laslett A L, Grimmond S B, Kolle G, Pera M F (2009). A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS One, 4(11): e7708
CrossRef Pubmed Google scholar
[68]
Huang V, Li L C (2012). miRNA goes nuclear. RNA Biol, 9(3): 269–273
CrossRef Pubmed Google scholar
[69]
Huang Z P, Chen J, Seok H Y, Zhang Z, Kataoka M, Hu X, Wang D Z (2013). MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res, 112(9): 1234–1243
CrossRef Pubmed Google scholar
[70]
Ikeda S, Kong S W, Lu J, Bisping E, Zhang H, Allen P D, Golub T R, Pieske B, Pu W T (2007). Altered microRNA expression in human heart disease. Physiol Genomics, 31(3): 367–373
CrossRef Pubmed Google scholar
[71]
Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T (2006). Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet, 51(12): 1087–1099
CrossRef Pubmed Google scholar
[72]
Jaguszewski M, Osipova J, Ghadri J R, Napp L C, Widera C, Franke J, Fijalkowski M, Nowak R, Fijalkowska M, Volkmann I, Katus H A, Wollert K C, Bauersachs J, Erne P, Lüscher T F, Thum T, Templin C (2014). A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J, 35(15): 999–1006
CrossRef Pubmed Google scholar
[73]
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080
CrossRef Pubmed Google scholar
[74]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
CrossRef Pubmed Google scholar
[75]
Karamboulas C, Swedani A, Ward C, Al-Madhoun A S, Wilton S, Boisvenue S, Ridgeway A G, Skerjanc I S (2006). HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci, 119(Pt 20): 4305–4314
CrossRef Pubmed Google scholar
[76]
Kattman S J, Witty A D, Gagliardi M, Dubois N C, Niapour M, Hotta A, Ellis J, Keller G (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8(2): 228–240
CrossRef Pubmed Google scholar
[77]
Kavi H H, Birchler J A (2009). Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics Chromatin, 2(1): 15
CrossRef Pubmed Google scholar
[78]
Kawamura T, Ono K, Morimoto T, Wada H, Hirai M, Hidaka K, Morisaki T, Heike T, Nakahata T, Kita T, Hasegawa K (2005). Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J Biol Chem, 280(20): 19682–19688
CrossRef Pubmed Google scholar
[79]
Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 108(3): 407–414
CrossRef Pubmed Google scholar
[80]
Kehat I, Molkentin J D (2010). Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25): 2727–2735
CrossRef Pubmed Google scholar
[81]
Kim D H, Saetrom P, Snøve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A, 105(42): 16230–16235
CrossRef Pubmed Google scholar
[82]
Kim D H, Villeneuve L M, Morris K V, Rossi J J (2006). Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol, 13(9): 793–797
CrossRef Pubmed Google scholar
[83]
Kim J K, Samaranayake M, Pradhan S (2009). Epigenetic mechanisms in mammals. Cell Mol Life Sci, 66(4): 596–612
CrossRef Pubmed Google scholar
[84]
Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee M J, Ji H, Ehrlich L I R, Yabuuchi A, Takeuchi A, Cunniff K C, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon T J, Irizarry R A, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin S H, Weissman I L, Feinberg A P, Daley G Q (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313): 285–290
CrossRef Pubmed Google scholar
[85]
Klattenhoff C A, Scheuermann J C, Surface L E, Bradley R K, Fields P A, Steinhauser M L, Ding H, Butty V L, Torrey L, Haas S, Abo R, Tabebordbar M, Lee R T, Burge C B, Boyer L A (2013). Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 152(3): 570–583
CrossRef Pubmed Google scholar
[86]
Kohli R M, Zhang Y (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472): 472–479
CrossRef Pubmed Google scholar
[87]
Koitabashi N, Kass D A (2012). Reverse remodeling in heart failure—mechanisms and therapeutic opportunities. Nat Rev Cardiol, 9(3): 147–157
CrossRef Pubmed Google scholar
[88]
Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, Manzke O, Bloch W, Bohlen H, Hescheler J, Fleischmann B K (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J, 19(6): 577–579
Pubmed
[89]
Krenning G, Zeisberg E M, Kalluri R (2010). The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol, 225(3): 631–637
CrossRef Pubmed Google scholar
[90]
Kreutziger K L, Muskheli V, Johnson P, Braun K, Wight T N, Murry C E (2011). Developing vasculature and stroma in engineered human myocardium. Tissue Eng Part A, 17(9-10): 1219–1228
CrossRef Pubmed Google scholar
[91]
Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T (2014). Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res, 114(10): 1569–1575
CrossRef Pubmed Google scholar
[92]
Laflamme M A, Chen K Y, Naumova A V, Muskheli V, Fugate J A, Dupras S K, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill E A, Ueno S, Yuan C, Gold J, Murry C E (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 25(9): 1015–1024
CrossRef Pubmed Google scholar
[93]
Laflamme M A, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry C E (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol, 167(3): 663–671
CrossRef Pubmed Google scholar
[94]
Laflamme M A, Murry C E (2005). Regenerating the heart. Nat Biotechnol, 23(7): 845–856
CrossRef Pubmed Google scholar
[95]
Laflamme M A, Murry C E (2011). Heart regeneration. Nature, 473(7347): 326–335
CrossRef Pubmed Google scholar
[96]
Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong C T, Low H M, Kin Sung K W, Rigoutsos I, Loring J, Wei C L (2010). Dynamic changes in the human methylome during differentiation. Genome Res, 20(3): 320–331
CrossRef Pubmed Google scholar
[97]
Leri A, Kajstura J, Anversa P (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res, 109(8): 941–961
CrossRef Pubmed Google scholar
[98]
Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L (2010). Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A, 16(1): 115–125
CrossRef Pubmed Google scholar
[99]
Li X, Wang J, Jia Z, Cui Q, Zhang C, Wang W, Chen P, Ma K, Zhou C (2013). MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS One, 8(9): e74504
CrossRef Pubmed Google scholar
[100]
Lian X, Zhang J, Azarin S M, Zhu K, Hazeltine L B, Bao X, Hsiao C, Kamp T J, Palecek S P (2013). Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc, 8(1): 162–175
CrossRef Pubmed Google scholar
[101]
Lin Z, Pu WT (2014). Strategies for cardiac regeneration and repair. Sci Transl Med, 6: 239rv231
[102]
Lindsley R C, Gill J G, Kyba M, Murphy T L, Murphy K M (2006). Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development, 133(19): 3787–3796
CrossRef Pubmed Google scholar
[103]
Lu T Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L (2013). Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun, 4: 2307
CrossRef Pubmed Google scholar
[104]
Luco R F, Allo M, Schor I E, Kornblihtt A R, Misteli T (2011). Epigenetics in alternative pre-mRNA splicing. Cell, 144(1): 16–26
CrossRef Pubmed Google scholar
[105]
Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260
CrossRef Pubmed Google scholar
[106]
Majumdar G, Johnson I M, Kale S, Raghow R (2008). Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. Mol Cell Biochem, 312(1-2): 47–60
CrossRef Pubmed Google scholar
[107]
Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart A F, Smith A, Stunnenberg H G (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell, 149(3): 590–604
CrossRef Pubmed Google scholar
[108]
Matkovich S J, Edwards J R, Grossenheider T C, de Guzman Strong C, Dorn G W 2nd (2014). Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A, 111(33): 12264–12269
CrossRef Pubmed Google scholar
[109]
Nature Methods editorial (2012). Method of the Year 2011. Nat Methods, 9(1): 1
CrossRef Pubmed Google scholar
[110]
Miyamoto S, Kawamura T, Morimoto T, Ono K, Wada H, Kawase Y, Matsumori A, Nishio R, Kita T, Hasegawa K (2006). Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation, 113(5): 679–690
CrossRef Pubmed Google scholar
[111]
Movassagh M, Choy M K, Goddard M, Bennett M R, Down T A, Foo R S (2010). Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One, 5(1): e8564
CrossRef Pubmed Google scholar
[112]
Movassagh M, Choy M K, Knowles D A, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett M R, Foo R S Y (2011). Distinct epigenomic features in end-stage failing human hearts. Circulation, 124(22): 2411–2422
CrossRef Pubmed Google scholar
[113]
Mujtaba S, Zeng L, Zhou M M (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene, 26(37): 5521–5527
CrossRef Pubmed Google scholar
[114]
Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere A B, Passier R, Tertoolen L (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107(21): 2733–2740
CrossRef Pubmed Google scholar
[115]
Naito A T, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A, 103(52): 19812–19817
CrossRef Pubmed Google scholar
[116]
Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita J K (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118(5): 498–506
CrossRef Pubmed Google scholar
[117]
Ng S Y, Wong C K, Tsang S Y (2010). Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol, 299(6): C1234–C1249
CrossRef Pubmed Google scholar
[118]
Nie L, Wu H J, Hsu J M, Chang S S, Labaff A M, Li C W, Wang Y, Hsu J L, Hung M C (2012). Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res, 4(2): 127–150
Pubmed
[119]
Nissim L, Perli S D, Fridkin A, Perez-Pinera P, Lu T K (2014). Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell, 54(4): 698–710
CrossRef Pubmed Google scholar
[120]
Nunes S S, Miklas J W, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme M A, Nanthakumar K, Gross G J, Backx P H, Keller G, Radisic M (2013). Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods, 10(8): 781–787
CrossRef Pubmed Google scholar
[121]
Nussbaum J, Minami E, Laflamme M A, Virag J A, Ware C B, Masino A, Muskheli V, Pabon L, Reinecke H, Murry C E (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J, 21(7): 1345–1357
CrossRef Pubmed Google scholar
[122]
Osafune K, Caron L, Borowiak M, Martinez R J, Fitz-Gerald C S, Sato Y, Cowan C A, Chien K R, Melton D A (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol, 26(3): 313–315
CrossRef Pubmed Google scholar
[123]
Paige S L, Thomas S, Stoick-Cooper C L, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, Moon R T, Stamatoyannopoulos J, Murry C E (2012). A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell, 151(1): 221–232
CrossRef Pubmed Google scholar
[124]
Papait R, Condorelli G (2010). Epigenetics in heart failure. Ann N Y Acad Sci, 1188(1): 159–164
CrossRef Pubmed Google scholar
[125]
Papait R, Kunderfranco P, Stirparo G G, Latronico M V, Condorelli G (2013). Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res, 6(6): 876–883
CrossRef Pubmed Google scholar
[126]
Pascut F C, Goh H T, George V, Denning C, Notingher I (2011). Toward label-free Raman-activated cell sorting of cardiomyocytes derived from human embryonic stem cells. J Biomed Opt, 16(4): 045002
CrossRef Pubmed Google scholar
[127]
Passier R, van Laake L W, Mummery C L (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193): 322–329
CrossRef Pubmed Google scholar
[128]
Porrello E R, Mahmoud A I, Simpson E, Hill J A, Richardson J A, Olson E N, Sadek H A (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020): 1078–1080
CrossRef Pubmed Google scholar
[129]
Radisic M, Christman K L (2013). Materials science and tissue engineering: repairing the heart. Mayo Clin Proc, 88(8): 884–898
CrossRef Pubmed Google scholar
[130]
Rai M, Walthall J M, Hu J, Hatzopoulos A K (2012). Continuous antagonism by Dkk1 counter activates canonical Wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells. Stem Cells Dev, 21(1): 54–66
CrossRef Pubmed Google scholar
[131]
Rajala K, Pekkanen-Mattila M, Aalto-Setälä K (2011). Cardiac differentiation of pluripotent stem cells. Stem Cells Int, 2011: 383709
CrossRef Pubmed Google scholar
[132]
Reinecke H, Zhang M, Bartosek T, Murry C E (1999). Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation, 100(2): 193–202
CrossRef Pubmed Google scholar
[133]
Reisman D, Glaros S, Thompson E A (2009). The SWI/SNF complex and cancer. Oncogene, 28(14): 1653–1668
CrossRef Pubmed Google scholar
[134]
Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D, Behrens A, Bertone P, Hendrich B (2012). NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J, 31(3): 593–605
CrossRef Pubmed Google scholar
[135]
Rizzi R, Di Pasquale E, Portararo P, Papait R, Cattaneo P, Latronico M V, Altomare C, Sala L, Zaza A, Hirsch E, Naldini L, Condorelli G, Bearzi C (2012). Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death Differ, 19(7): 1162–1174
CrossRef Pubmed Google scholar
[136]
Robertson K D (2005). DNA methylation and human disease. Nat Rev Genet, 6(8): 597–610
CrossRef Pubmed Google scholar
[137]
Robey T E, Saiget M K, Reinecke H, Murry C E (2008). Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol, 45(4): 567–581
CrossRef Pubmed Google scholar
[138]
Rubart M, Pasumarthi K B, Nakajima H, Soonpaa M H, Nakajima H O, Field L J (2003). Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ Res, 92(11): 1217–1224
CrossRef Pubmed Google scholar
[139]
Salmanidis M, Pillman K, Goodall G, Bracken C (2014). Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol, 54: 304–311
CrossRef Pubmed Google scholar
[140]
Sanchez-Freire V, Lee A S, Hu S, Abilez O J, Liang P, Lan F, Huber B C, Ong S G, Hong W X, Huang M, Wu J C (2014). Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol, 64(5): 436–448
CrossRef Pubmed Google scholar
[141]
Santillan D A, Theisler C M, Ryan A S, Popovic R, Stuart T, Zhou M M, Alkan S, Zeleznik-Le N J (2006). Bromodomain and histone acetyltransferase domain specificities control mixed lineage leukemia phenotype. Cancer Res, 66(20): 10032–10039
CrossRef Pubmed Google scholar
[142]
Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419(6905): 407–411
CrossRef Pubmed Google scholar
[143]
Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D (2008). Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol, 28(8): 2718–2731
CrossRef Pubmed Google scholar
[144]
Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi M E (2007). Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells, 25(5): 1136–1144
CrossRef Pubmed Google scholar
[145]
Segers V F, Lee R T (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181): 937–942
CrossRef Pubmed Google scholar
[146]
Senyo S E, Steinhauser M L, Pizzimenti C L, Yang V K, Cai L, Wang M, Wu T D, Guerquin-Kern J L, Lechene C P, Lee R T (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432): 433–436
CrossRef Pubmed Google scholar
[147]
Sera T (2009). Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev, 61(7-8): 513–526
CrossRef Pubmed Google scholar
[148]
Shiba Y, Fernandes S, Zhu W Z, Filice D, Muskheli V, Kim J, Palpant N J, Gantz J, Moyes K W, Reinecke H, Van Biber B, Dardas T, Mignone J L, Izawa A, Hanna R, Viswanathan M, Gold J D, Kotlikoff M I, Sarvazyan N, Kay M W, Murry C E, Laflamme M A (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415): 322–325
CrossRef Pubmed Google scholar
[149]
Shiba Y, Hauch K D, Laflamme M A (2009). Cardiac applications for human pluripotent stem cells. Curr Pharm Des, 15(24): 2791–2806
CrossRef Pubmed Google scholar
[150]
Shilatifard A (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem, 75(1): 243–269
CrossRef Pubmed Google scholar
[151]
Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol, 285(6): H2355–H2363
Pubmed
[152]
Sondermeijer B M, Bakker A, Halliani A, de Ronde M W, Marquart A A, Tijsen A J, Mulders T A, Kok M G M, Battjes S, Maiwald S, Sivapalaratnam S, Trip M D, Moerland P D, Meijers J C M, Creemers E E, Pinto-Sietsma S J (2011). Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS One, 6(10): e25946
CrossRef Pubmed Google scholar
[153]
Stein A B, Jones T A, Herron T J, Patel S R, Day S M, Noujaim S F, Milstein M L, Klos M, Furspan P B, Jalife J, Dressler G R (2011). Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest, 121(7): 2641–2650
CrossRef Pubmed Google scholar
[154]
Stevens K R, Kreutziger K L, Dupras S K, Korte F S, Regnier M, Muskheli V, Nourse M B, Bendixen K, Reinecke H, Murry C E (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A, 106(39): 16568–16573
CrossRef Pubmed Google scholar
[155]
Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen S E (2011). 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol, 12(6): R54
CrossRef Pubmed Google scholar
[156]
Sucharov C, Bristow M R, Port J D (2008). miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol, 45(2): 185–192
CrossRef Pubmed Google scholar
[157]
Sullivan G J, Bai Y, Fletcher J, Wilmut I (2010). Induced pluripotent stem cells: epigenetic memories and practical implications. Mol Hum Reprod, 16(12): 880–885
CrossRef Pubmed Google scholar
[158]
Takaya T, Ono K, Kawamura T, Takanabe R, Kaichi S, Morimoto T, Wada H, Kita T, Shimatsu A, Hasegawa K (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ J, 73(8): 1492–1497
CrossRef Pubmed Google scholar
[159]
Tanasijevic B, Dai B, Ezashi T, Livingston K, Roberts R M, Rasmussen T P (2009). Progressive accumulation of epigenetic heterogeneity during human ES cell culture. Epigenetics, 4(5): 330–338
CrossRef Pubmed Google scholar
[160]
Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, Hashimoto H, Suzuki T, Yamashita H, Satoh Y, Egashira T, Seki T, Muraoka N, Yamakawa H, Ohgino Y, Tanaka T, Yoichi M, Yuasa S, Murata M, Suematsu M, Fukuda K (2013). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12(1): 127–137
CrossRef Pubmed Google scholar
[161]
Tompkins J D, Hall C, Chen V C, Li A X, Wu X, Hsu D, Couture L A, Riggs A D (2012). Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A, 109(31): 12544–12549
CrossRef Pubmed Google scholar
[162]
Trivedi C M, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger P R, Wurst W, Ferrari V A, Abrams C S, Gruber P J, Epstein J A (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med, 13(3): 324–331
CrossRef Pubmed Google scholar
[163]
Tsai M C, Manor O, Wan Y, Mosammaparast N, Wang J K, Lan F, Shi Y, Segal E, Chang H Y (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992): 689–693
CrossRef Pubmed Google scholar
[164]
Tulloch N L, Muskheli V, Razumova M V, Korte F S, Regnier M, Hauch K D, Pabon L, Reinecke H, Murry C E (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res, 109(1): 47–59
CrossRef Pubmed Google scholar
[165]
Ueno S, Weidinger G, Osugi T, Kohn A D, Golob J L, Pabon L, Reinecke H, Moon R T, Murry C E (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A, 104(23): 9685–9690
CrossRef Pubmed Google scholar
[166]
Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita J K (2011). Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One, 6(8): e23657
CrossRef Pubmed Google scholar
[167]
Van Hoof D, Dormeyer W, Braam S R, Passier R, Monshouwer-Kloots J, Ward-van Oostwaard D, Heck A J R, Krijgsveld J, Mummery C L (2010). Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res, 9(3): 1610–1618
CrossRef Pubmed Google scholar
[168]
van Rooij E, Sutherland L B, Liu N, Williams A H, McAnally J, Gerard R D, Richardson J A, Olson E N (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A, 103(48): 18255–18260
CrossRef Pubmed Google scholar
[169]
Verheugt C L, Uiterwaal C S, van der Velde E T, Meijboom F J, Pieper P G, van Dijk A P, Vliegen H W, Grobbee D E, Mulder B J M (2010). Mortality in adult congenital heart disease. Eur Heart J, 31(10): 1220–1229
CrossRef Pubmed Google scholar
[170]
Voigt P, LeRoy G, Drury W J 3rd, Zee B M, Son J, Beck D B, Young N L, Garcia B A, Reinberg D (2012). Asymmetrically modified nucleosomes. Cell, 151(1): 181–193
CrossRef Pubmed Google scholar
[171]
Wamstad J A, Alexander J M, Truty R M, Shrikumar A, Li F, Eilertson K E, Ding H, Wylie J N, Pico A R, Capra J A, Erwin G, Kattman S J, Keller G M, Srivastava D, Levine S S, Pollard K S, Holloway A K, Boyer L A, Bruneau B G (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell, 151(1): 206–220
CrossRef Pubmed Google scholar
[172]
Wang G K, Zhu J Q, Zhang J T, Li Q, Li Y, He J, Qin Y W, Jing Q (2010). Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 31(6): 659–666
CrossRef Pubmed Google scholar
[173]
Xu C, Police S, Rao N, Carpenter M K (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res, 91(6): 501–508
CrossRef Pubmed Google scholar
[174]
Xu H, Yi B A, Wu H, Bock C, Gu H, Lui K O, Park J H C, Shao Y, Riley A K, Domian I J, Hu E, Willette R, Lepore J, Meissner A, Wang Z, Chien K R (2012). Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res, 22(1): 142–154
CrossRef Pubmed Google scholar
[175]
Xue T, Cho H C, Akar F G, Tsang S Y, Jones S P, Marbán E, Tomaselli G F, Li R A (2005). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 111(1): 11–20
CrossRef Pubmed Google scholar
[176]
Yang L, Soonpaa M H, Adler E D, Roepke T K, Kattman S J, Kennedy M, Henckaerts E, Bonham K, Abbott G W, Linden R M, Field L J, Keller G M (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453(7194): 524–528
CrossRef Pubmed Google scholar
[177]
Yang Y W, Flynn R A, Chen Y, Qu K, Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. Elife, 3: e02046
CrossRef Pubmed Google scholar
[178]
Yao C X, Wei Q X, Zhang Y Y, Wang W P, Xue L X, Yang F, Zhang S F, Xiong C J, Li W Y, Wei Z R, Zou Y, Zang M X (2013). miR-200b targets GATA-4 during cell growth and differentiation. RNA Biol, 10(4): 465–480
CrossRef Pubmed Google scholar
[179]
Yi F F, Yang L, Li Y H, Su P X, Cai J, Yang X C (2009). Electrophysiological development of transplanted embryonic stem cell-derived cardiomyocytes in the hearts of syngeneic mice. Arch Med Res, 40(5): 339–344
CrossRef Pubmed Google scholar
[180]
Yoon B S, Yoo S J, Lee J E, You S, Lee H T, Yoon H S (2006). Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 74(4): 149–159
CrossRef Pubmed Google scholar
[181]
Zaratiegui M, Irvine D V, Martienssen R A (2007). Noncoding RNAs and gene silencing. Cell, 128(4): 763–776
CrossRef Pubmed Google scholar
[182]
Zhang C L, McKinsey T A, Chang S, Antos C L, Hill J A, Olson E N (2002a). Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell, 110(4): 479–488
CrossRef Pubmed Google scholar
[183]
Zhang J, Klos M, Wilson G F, Herman A M, Lian X, Raval K K, Barron M R, Hou L, Soerens A G, Yu J, Palecek S P, Lyons G E, Thomson J A, Herron T J, Jalife J, Kamp T J (2012a). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res, 111(9): 1125–1136
CrossRef Pubmed Google scholar
[184]
Zhang L, Chen B, Zhao Y, Dubielecka P M, Wei L, Qin G J, Chin Y E, Wang Y, Zhao T C (2012b). Inhibition of histone deacetylase-induced myocardial repair is mediated by c-kit in infarcted hearts. J Biol Chem, 287(47): 39338–39348
CrossRef Pubmed Google scholar
[185]
Zhang L, Qin X, Zhao Y, Fast L, Zhuang S, Liu P, Cheng G, Zhao T C (2012c). Inhibition of histone deacetylases preserves myocardial performance and prevents cardiac remodeling through stimulation of endogenous angiomyogenesis. J Pharmacol Exp Ther, 341(1): 285–293
CrossRef Pubmed Google scholar
[186]
Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers D M, Maier L S, Olson E N, Brown J H (2007). CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem, 282(48): 35078–35087
CrossRef Pubmed Google scholar
[187]
Zhang Y M, Hartzell C, Narlow M, Dudley S C Jr (2002). Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation, 106(10): 1294–1299
CrossRef Pubmed Google scholar
[188]
Zhu S, Hu X, Han S, Yu Z, Peng Y, Zhu J, Liu X, Qian L, Zhu C, Li M, Song G, Guo X (2014). Differential expression profile of long non-coding RNAs during differentiation of cardiomyocytes. Int J Med Sci, 11(5): 500–507
CrossRef Pubmed Google scholar
[189]
Zwi-Dantsis L, Gepstein L (2012). Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci, 69(19): 3285–3299
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Joshua D. Tompkins, PhD and Arthur D. Riggs, PhD declare they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(605 KB)

Accesses

Citations

Detail

Sections
Recommended

/