Please wait a minute...

Frontiers in Biology

Front Biol    2012, Vol. 7 Issue (3) : 179-188     https://doi.org/10.1007/s11515-012-1216-0
REVIEW
Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders
Kimberly M. CHRISTIAN1,2(), Hongjun SONG1,2,3, Guo-li MING1,2,3
1. Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; 2. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; 3. The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
Download: PDF(234 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cellular reprogramming allows for the de novo generation of human neurons and glial cells from patients with neurological and psychiatric disorders. Crucially, this technology preserves the genome of the donor individual and thus provides a unique opportunity for systematic investigation of genetic influences on neuronal pathophysiology. Although direct reprogramming of adult somatic cells to neurons is now possible, the majority of recent studies have used induced pluripotent stem cells (iPSCs) derived from patient fibroblasts to generate neural progenitors that can be differentiated to specific neural cell types. Investigations of monogenic diseases have established proof-of-principle for many aspects of cellular disease modeling, including targeted differentiation of neuronal populations and rescue of phenotypes in patient iPSC lines. Refinement of protocols to allow for efficient generation of iPSC lines from large patient cohorts may reveal common functional pathology and genetic interactions in diseases with a polygenic basis. We review several recent studies that illustrate the utility of iPSC-based cellular models of neurodevelopmental and neurodegenerative disorders to identify novel phenotypes and therapeutic approaches.

Keywords reprogramming      iPSCs      neurodevelopment      neurodegeneration     
Corresponding Author(s): CHRISTIAN Kimberly M.,Email:kchris12@jhmi.edu   
Issue Date: 01 June 2012
 Cite this article:   
Hongjun SONG,Guo-li MING,Kimberly M. CHRISTIAN. Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders[J]. Front Biol, 2012, 7(3): 179-188.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-012-1216-0
http://journal.hep.com.cn/fib/EN/Y2012/V7/I3/179
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongjun SONG
Guo-li MING
Kimberly M. CHRISTIAN
Fig.1  Simplified schematic diagram showing the development of cell-based assays for the investigation of neurological disease mechanisms.
(Blue-shaded box) Using fibroblasts obtained from patients and disease-free control subjects, human neurons can be generated through direct conversion or following an intervening stage of pluripotency. Disease-relevant neuronal populations can be enriched during the differentiation process through targeted protocols. (Pink-shaded box) Phenotypic analysis of human neurons generated from patients and control subjects may include any cell-based morphological or functional assay (e.g. dendritic development, synaptogenesis, synaptic connectivity, electrophysiology, intracellular signaling) as well as genetic and epigenetic profiling to produce complete transcriptomes and methylomes of homogenous populations. High-throughput approaches are particularly desirable for polygenic diseases to identify common functional disruptions across a heterogeneous patient population. (Yellow shaded box) Based on information acquired during the phenotypic screens or from previous investigations, targeted genetic manipulation can repair known mutations, which can then be subjected to phenotypic screens or introduced to neural progenitor populations to track development following genetic repair. Bioactive compounds can be similarly screened at various timepoints to evaluate potential to reverse or prevent phenotypic abnormalities. (Green-shaded box) Transplantation of patient-derived neural progenitors to mice can provide critical information regarding development and degeneration. Ultimately, cell-based screening and repair of neuronal dysfunction can be used to develop novel therapeutics for the patient population.
DiseaseMutationDifferentiationPhenotypeRescueReferences
RTTMeCP2missense, nonsense and frameshift mutationsGABAergic and glutamatergic neuronsReduced soma size, number of spines, glutamatergic synapses; altered Ca2+ transients, sEPSCs, sIPSCsIGF1 - partial increase in synapse number; Gentamycin - restored MeCP2 expression in nonsense mutationMarchetto et al., 2010
TSCACNA1C point mutationLayer-specific cortical neuronsDifferential gene expression; TH expression~Pa?ca et al., 2011
FDIKBKAP point mutationCNS and PNS precursorsIKBKAP splicing, neurogenesis, migration of neural crest precursorsKinetin rescue of splicing and autonomic neuron differentiationLee et al., 2009
SZ4bp deletion in DISC1- frameshift mutation~~~Chiang et al, 2011
SZNot knownGlutamatergic, GABAergic and dopaminergic neuronsDecreased neuronal connectivity, increased NRG1 expressionLoxapine rescue of neuronal connectivity deficits, NRG1 expressionBrennand et al., 2011
PDLRRK2dominant missense mutationMidbrain dopaminergic neuronsDifferential gene expression; increased α-synuclein expression, increased susceptibility to H2O2, 6-OHDA, and MG-132~Nguyen et al., 2011
PDPINK1 nonsense or missense mutationsDopaminergic neuronsImpaired stress-induced translocation of Parkin to mitochondria; increased PGC-1α and mtDNA following depolarizationOverexpression of WT PINK1 restored translocation capacity and prevented PGC-1α increaseSeibler et al., 2011
PDPARKINexon deletion(3 and/or 5)Midbrain dopaminergic neuronsIncreased spontaneous dopamine release; enhanced transcription of MAO-A, MAO-B; increased oxidative stressOverexpression of WT-parkin rescued all phenotypesJiang et al., 2012
PDα synuclein point mutationDopaminergic neurons~ZFN gene-editing; repair of point mutation in patient iPSCs; introduction of point mutation in hESCsSoldner et al., 2011
ADAPP duplication in 2 patients (APPDp);No identified mutations in 2 sporadic AD patients (sAD)Glutamatergic, GABAergic and cholinergic neuronsIncreased amyloid-β, p-tau, and aGSK-3β expression in both APPDp lines and 1 of 2 sAD linesPartial rescue of amyloid-β, p-tau, and aGSK-3β expression with γ and β-secretase inhibitorsIsrael et al., 2012
Tab.1  Representative patient-specific iPSC studies of neurological disorders
1 Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton S A, Ding S (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell , 9(2): 113-118
doi: 10.1016/j.stem.2011.07.002 pmid:21802386
2 Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet , 23(2): 185-188
doi: 10.1038/13810 pmid:10508514
3 Anderson S L, Qiu J, Rubin B Y (2003a). EGCG corrects aberrant splicing of IKAP mRNA in cells from patients with familial dysautonomia. Biochem Biophys Res Commun , 310(2): 627-633
doi: 10.1016/j.bbrc.2003.09.019 pmid:14521957
4 Anderson S L, Qiu J, Rubin B Y (2003b). Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochem Biophys Res Commun , 306(1): 303-309
doi: 10.1016/S0006-291X(03)00971-9 pmid:12788105
5 Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith Z D, Ziller M, Croft G F, Amoroso M W, Oakley D H, Gnirke A, Eggan K, Meissner A (2011). Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell , 144(3): 439-452
doi: 10.1016/j.cell.2010.12.032 pmid:21295703
6 Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol , 29(3): 279-286
doi: 10.1038/nbt.1783 pmid:21293464
7 Brennand K J, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage F H (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature , 473(7346): 221-225
doi: 10.1038/nature09915 pmid:21490598
8 Caiazzo M, Dell’Anno M T, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova T D, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov R R, Gustincich S, Dityatev A, Broccoli V (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature , 476(7359): 224-227
doi: 10.1038/nature10284 pmid:21725324
9 Chambers S M, Studer L (2011). Cell fate plug and play: direct reprogramming and induced pluripotency. Cell , 145(6): 827-830
doi: 10.1016/j.cell.2011.05.036 pmid:21663788
10 Cheung A Y, Horvath L M, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, Carrel L, Ellis J (2011). Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet , 20(11): 2103-2115
doi: 10.1093/hmg/ddr093 pmid:21372149
11 Chiang C H, Su Y, Wen Z, Yoritomo N, Ross C A, Margolis R L, Song H, Ming G L (2011). Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry , 16(4): 358-360
doi: 10.1038/mp.2011.13 pmid:21339753
12 Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell , 130(6): 1146-1158
doi: 10.1016/j.cell.2007.07.010 pmid:17825401
13 Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, Wiskow O, Tailor J, Trotter M, Pollard S, Smith A, Brüstle O (2012). Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE , 7(1): e29597
doi: 10.1371/journal.pone.0029597 pmid:22272239
14 Faulkner R L, Jang M H, Liu X B, Duan X, Sailor K A, Kim J Y, Ge S, Jones E G, Ming G L, Song H, Cheng H J (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA , 105(37): 14157-14162
doi: 10.1073/pnas.0806658105 pmid:18780780
15 Gore A, Li Z, Fung H L, Young J E, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel M A, Kiskinis E, Lee J H, Loh Y H, Manos P D, Montserrat N, Panopoulos A D, Ruiz S, Wilbert M L, Yu J, Kirkness E F, Izpisua Belmonte J C, Rossi D J, Thomson J A, Eggan K, Daley G Q, Goldstein L S, Zhang K (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature , 471(7336): 63-67
doi: 10.1038/nature09805 pmid:21368825
16 Hansen D V, Rubenstein J L, Kriegstein A R (2011). Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron , 70(4): 645-660
doi: 10.1016/j.neuron.2011.05.006 pmid:21609822
17 Harrison P J, Weinberger D R (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry , 10:40-68
18 Herbert M R (2010). Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol , 23(2): 103-110
19 Hussein S M, Batada N N, Vuoristo S, Ching R W, Autio R, N?rv? E, Ng S, Sourour M, H?m?l?inen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brüstle O, Bazett-Jones D P, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011). Copy number variation and selection during reprogramming to pluripotency. Nature , 471(7336): 58-62
doi: 10.1038/nature09871 pmid:21368824
20 Israel M A, Yuan S H, Bardy C, Reyna S M, Mu Y, Herrera C, Hefferan M P, Van Gorp S, Nazor K L, Boscolo F S, Carson C T, Laurent L C, Marsala M, Gage F H, Remes A M, Koo E H, Goldstein L S (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature , 482(7384): 216-220
pmid:22278060
21 Jiang H, Ren Y, Yuen E Y, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J (2012). Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun , 3: 668
doi: 10.1038/ncomms1669 pmid:22314364
22 Juopperi T A, Song H, Ming G L (2011). Modeling neurological diseases using patient-derived induced pluripotent stem cells. Future Neurol , 6(3): 363-373
doi: 10.2217/fnl.11.14 pmid:21731471
23 Keller F, Persico A M (2003). The neurobiological context of autism. Mol Neurobiol 28(1): 1-22
24 Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron , 63(6): 761-773
doi: 10.1016/j.neuron.2009.08.008 pmid:19778506
25 Kim K Y, Hysolli E, Park I H (2011). Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci USA , 108(34): 14169-14174
doi: 10.1073/pnas.1018979108 pmid:21807996
26 Koch P, Opitz T, Steinbeck J A, Ladewig J, Brüstle O (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA , 106(9): 3225-3230
doi: 10.1073/pnas.0808387106 pmid:19218428
27 Krencik R, Weick J P, Liu Y, Zhang Z J, Zhang S C (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol , 29(6): 528-534
doi: 10.1038/nbt.1877 pmid:21602806
28 Lee G, Papapetrou E P, Kim H, Chambers S M, Tomishima M J, Fasano C A, Ganat Y M, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature , 461(7262): 402-406
doi: 10.1038/nature08320 pmid:19693009
29 Lister R, Pelizzola M, Kida Y S, Hawkins R D, Nery J R, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson J A, Evans R M, Ecker J R (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature , 471(7336): 68-73
doi: 10.1038/nature09798 pmid:21289626
30 Mao Y, Ge X, Frank C L, Madison J M, Koehler A N, Doud M K, Tassa C, Berry E M, Soda T, Singh K K, Biechele T, Petryshen T L, Moon R T, Haggarty S J, Tsai L H (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell , 136(6): 1017-1031
doi: 10.1016/j.cell.2008.12.044 pmid:19303846
31 Martin I, Dawson V L, Dawson T M (2011). Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet , 12(1): 301-325
doi: 10.1146/annurev-genom-082410-101440 pmid:21639795
32 Marchetto M C, Carromeu C, Acab A, Yu D, Yeo G W, Mu Y, Chen G, Gage F H, Muotri A R (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell , 143(4): 527-39
33 Millar J K, Wilson-Annan J C, Anderson S, Christie S, Taylor M S, Semple C A, Devon R S, St Clair D M, Muir W J, Blackwood D H, Porteous D J (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet , 9(9): 1415-1423
doi: 10.1093/hmg/9.9.1415 pmid:10814723
34 Nguyen H N, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schüle B, Dolmetsch R E, Langston W, Palmer T D, Pera R R (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell , 8(3): 267-280
doi: 10.1016/j.stem.2011.01.013 pmid:21362567
35 Pang Z P, Yang N, Vierbuchen T, Ostermeier A, Fuentes D R, Yang T Q, Citri A, Sebastiano V, Marro S, Südhof T C, Wernig M (2011). Induction of human neuronal cells by defined transcription factors. Nature , 476(7359): 220-223
pmid:21617644
36 Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature , 451(7175): 141-146
doi: 10.1038/nature06534 pmid:18157115
37 Pa?ca S P, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Pa?ca A M, Cord B, Palmer T D, Chikahisa S, Nishino S, Bernstein J A, Hallmayer J, Geschwind D H, Dolmetsch R E (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med , 17(12): 1657-1662
doi: 10.1038/nm.2576 pmid:22120178
38 Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bj?rklund A, Lindvall O, Jakobsson J, Parmar M (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA , 108(25): 10343-10348
doi: 10.1073/pnas.1105135108 pmid:21646515
39 Pomp O, Dreesen O, Leong D F, Meller-Pomp O, Tan T T, Zhou F, Colman A (2011). Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase. Cell Stem Cell , 9(2): 156-165
doi: 10.1016/j.stem.2011.06.004 pmid:21816366
40 Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti W B, Moreno H, Abeliovich A (2011). Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell , 146(3): 359-371
doi: 10.1016/j.cell.2011.07.007 pmid:21816272
41 Ross C A, Margolis R L, Reading S A, Pletnikov M, Coyle J T (2006). Neurobiology of schizophrenia. Neuron , 52(1): 139-153
doi: 10.1016/j.neuron.2006.09.015 pmid:17015232
42 Sachs N A, Sawa A, Holmes S E, Ross C A, DeLisi L E, Margolis R L (2005). A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry , 10(8): 758-764
doi: 10.1038/sj.mp.4001667 pmid:15940305
43 Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci , 31(16): 5970-5976
doi: 10.1523/JNEUROSCI.4441-10.2011 pmid:21508222
44 Shi Y, Kirwan P, Smith J, Robinson H P, Livesey F J (2012). Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci , 15(3): 477-486
doi: 10.1038/nn.3041 pmid:22306606
45 Slaugenhaupt S A, Blumenfeld A, Gill S P, Leyne M, Mull J, Cuajungco M P, Liebert C B, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod F B, Gusella J F (2001). Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet , 68(3): 598-605
doi: 10.1086/318810 pmid:11179008
46 Slaugenhaupt S A, Mull J, Leyne M, Cuajungco M P, Gill S P, Hims M M, Quintero F, Axelrod F B, Gusella J F (2003). Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet , 13(4): 429-436
doi: 10.1093/hmg/ddh046 pmid:14709595
47 Soldner F, Laganière J, Cheng A W, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe L I, Myers R H, Lindquist S, Zhang L, Guschin D, Fong L K, Vu B J, Meng X, Urnov F D, Rebar E J, Gregory P D, Zhang H S, Jaenisch R (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell , 146(2): 318-331
doi: 10.1016/j.cell.2011.06.019 pmid:21757228
48 Spitzer N C (2006). Electrical activity in early neuronal development. Nature , 444(7120): 707-712
doi: 10.1038/nature05300 pmid:17151658
49 St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, Gosden C, Evans H J (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet , 336(8706): 13-16
doi: 10.1016/0140-6736(90)91520-K pmid:1973210
50 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell , 131(5): 861-872
doi: 10.1016/j.cell.2007.11.019 pmid:18035408
51 Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell , 126(4): 663-676
doi: 10.1016/j.cell.2006.07.024 pmid:16904174
52 Tchieu J, Kuoy E, Chin M H, Trinh H, Patterson M, Sherman S P, Aimiuwu O, Lindgren A, Hakimian S, Zack J A, Clark A T, Pyle A D, Lowry W E, Plath K (2010). Female human iPSCs retain an inactive X chromosome. Cell Stem Cell , 7(3): 329-342
doi: 10.1016/j.stem.2010.06.024 pmid:20727844
53 Tropea D, Giacometti E, Wilson N R, Beard C, McCurry C, Fu D D, Flannery R, Jaenisch R, Sur M (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA , 106(6): 2029-2034
doi: 10.1073/pnas.0812394106 pmid:19208815
54 Uhlhaas P J, Singer W (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci , 11(2): 100-113
doi: 10.1038/nrn2774 pmid:20087360
55 Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature , 463(7284): 1035-1041
doi: 10.1038/nature08797 pmid:20107439
56 Weinberger D R (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry , 44(7): 660-669
doi: 10.1001/archpsyc.1987.01800190080012 pmid:3606332
57 Yoo A S, Sun A X, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch R E, Tsien R W, Crabtree G R (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature , 476(7359): 228-231
doi: 10.1038/nature10323 pmid:21753754
58 Yu J, Vodyanik M A, SmugaOtto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science , 318(5858): 1917-1920
doi: 10.1126/science.1151526 pmid:18029452
Related articles from Frontiers Journals
[1] Rachel Babij,Natalia De Marco Garcia. Neuronal activity controls the development of interneurons in the somatosensory cortex[J]. Front. Biol., 2016, 11(6): 459-470.
[2] Behnam Ebrahimi. Chemical-only reprogramming to pluripotency[J]. Front. Biol., 2016, 11(2): 75-84.
[3] Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
[4] Yicheng Ding,Linda Howard,Louise Gallagher,Sanbing Shen. Regulation and postsynaptic binding of neurexins – drug targets for neurodevelopmental and neuropsychiatric disorders[J]. Front. Biol., 2015, 10(3): 239-251.
[5] Diana GUALLAR,Jianlong WANG. RNA-binding proteins in pluripotency, differentiation, and reprogramming[J]. Front. Biol., 2014, 9(5): 389-409.
[6] Aaron MCGEE,Guohui LI,Zhongming LU,Shenfeng QIU. Convergent synaptic and circuit substrates underlying autism genetic risks[J]. Front. Biol., 2014, 9(2): 137-150.
[7] Abiodun AJAYI, Xin YU, Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
[8] Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
[9] Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
[10] Richard D. Smrt, Xinyu Zhao, . Epigenetic regulation of neuronal dendrite and dendritic spine development[J]. Front. Biol., 2010, 5(4): 304-323.
[11] Wei LI, Qi ZHOU. Epigenetic reprogramming: roads to pluripotency[J]. Front. Biol., 2010, 5(1): 8-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed