Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders

Kimberly M. CHRISTIAN, Hongjun SONG, Guo-li MING

PDF(234 KB)
PDF(234 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (3) : 179-188. DOI: 10.1007/s11515-012-1216-0
REVIEW
REVIEW

Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders

Author information +
History +

Abstract

Cellular reprogramming allows for the de novo generation of human neurons and glial cells from patients with neurological and psychiatric disorders. Crucially, this technology preserves the genome of the donor individual and thus provides a unique opportunity for systematic investigation of genetic influences on neuronal pathophysiology. Although direct reprogramming of adult somatic cells to neurons is now possible, the majority of recent studies have used induced pluripotent stem cells (iPSCs) derived from patient fibroblasts to generate neural progenitors that can be differentiated to specific neural cell types. Investigations of monogenic diseases have established proof-of-principle for many aspects of cellular disease modeling, including targeted differentiation of neuronal populations and rescue of phenotypes in patient iPSC lines. Refinement of protocols to allow for efficient generation of iPSC lines from large patient cohorts may reveal common functional pathology and genetic interactions in diseases with a polygenic basis. We review several recent studies that illustrate the utility of iPSC-based cellular models of neurodevelopmental and neurodegenerative disorders to identify novel phenotypes and therapeutic approaches.

Keywords

reprogramming / iPSCs / neurodevelopment / neurodegeneration

Cite this article

Download citation ▾
Kimberly M. CHRISTIAN, Hongjun SONG, Guo-li MING. Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders. Front Biol, 2012, 7(3): 179‒188 https://doi.org/10.1007/s11515-012-1216-0

References

[1]
Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton S A, Ding S (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell, 9(2): 113-118
CrossRef Pubmed Google scholar
[2]
Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185-188
CrossRef Pubmed Google scholar
[3]
Anderson S L, Qiu J, Rubin B Y (2003a). EGCG corrects aberrant splicing of IKAP mRNA in cells from patients with familial dysautonomia. Biochem Biophys Res Commun, 310(2): 627-633
CrossRef Pubmed Google scholar
[4]
Anderson S L, Qiu J, Rubin B Y (2003b). Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochem Biophys Res Commun, 306(1): 303-309
CrossRef Pubmed Google scholar
[5]
Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith Z D, Ziller M, Croft G F, Amoroso M W, Oakley D H, Gnirke A, Eggan K, Meissner A (2011). Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell, 144(3): 439-452
CrossRef Pubmed Google scholar
[6]
Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol, 29(3): 279-286
CrossRef Pubmed Google scholar
[7]
Brennand K J, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage F H (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473(7346): 221-225
CrossRef Pubmed Google scholar
[8]
Caiazzo M, Dell’Anno M T, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova T D, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov R R, Gustincich S, Dityatev A, Broccoli V (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476(7359): 224-227
CrossRef Pubmed Google scholar
[9]
Chambers S M, Studer L (2011). Cell fate plug and play: direct reprogramming and induced pluripotency. Cell, 145(6): 827-830
CrossRef Pubmed Google scholar
[10]
Cheung A Y, Horvath L M, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, Carrel L, Ellis J (2011). Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet, 20(11): 2103-2115
CrossRef Pubmed Google scholar
[11]
Chiang C H, Su Y, Wen Z, Yoritomo N, Ross C A, Margolis R L, Song H, Ming G L (2011). Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry, 16(4): 358-360
CrossRef Pubmed Google scholar
[12]
Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130(6): 1146-1158
CrossRef Pubmed Google scholar
[13]
Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, Wiskow O, Tailor J, Trotter M, Pollard S, Smith A, Brüstle O (2012). Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE, 7(1): e29597
CrossRef Pubmed Google scholar
[14]
Faulkner R L, Jang M H, Liu X B, Duan X, Sailor K A, Kim J Y, Ge S, Jones E G, Ming G L, Song H, Cheng H J (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA, 105(37): 14157-14162
CrossRef Pubmed Google scholar
[15]
Gore A, Li Z, Fung H L, Young J E, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel M A, Kiskinis E, Lee J H, Loh Y H, Manos P D, Montserrat N, Panopoulos A D, Ruiz S, Wilbert M L, Yu J, Kirkness E F, Izpisua Belmonte J C, Rossi D J, Thomson J A, Eggan K, Daley G Q, Goldstein L S, Zhang K (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature, 471(7336): 63-67
CrossRef Pubmed Google scholar
[16]
Hansen D V, Rubenstein J L, Kriegstein A R (2011). Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron, 70(4): 645-660
CrossRef Pubmed Google scholar
[17]
Harrison P J, Weinberger D R (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry, 10:40-68
[18]
Herbert M R (2010). Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol, 23(2): 103-110
[19]
Hussein S M, Batada N N, Vuoristo S, Ching R W, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brüstle O, Bazett-Jones D P, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011). Copy number variation and selection during reprogramming to pluripotency. Nature, 471(7336): 58-62
CrossRef Pubmed Google scholar
[20]
Israel M A, Yuan S H, Bardy C, Reyna S M, Mu Y, Herrera C, Hefferan M P, Van Gorp S, Nazor K L, Boscolo F S, Carson C T, Laurent L C, Marsala M, Gage F H, Remes A M, Koo E H, Goldstein L S (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature, 482(7384): 216-220
Pubmed
[21]
Jiang H, Ren Y, Yuen E Y, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J (2012). Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun, 3: 668
CrossRef Pubmed Google scholar
[22]
Juopperi T A, Song H, Ming G L (2011). Modeling neurological diseases using patient-derived induced pluripotent stem cells. Future Neurol, 6(3): 363-373
CrossRef Pubmed Google scholar
[23]
Keller F, Persico A M (2003). The neurobiological context of autism. Mol Neurobiol 28(1): 1-22
[24]
Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63(6): 761-773
CrossRef Pubmed Google scholar
[25]
Kim K Y, Hysolli E, Park I H (2011). Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci USA, 108(34): 14169-14174
CrossRef Pubmed Google scholar
[26]
Koch P, Opitz T, Steinbeck J A, Ladewig J, Brüstle O (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA, 106(9): 3225-3230
CrossRef Pubmed Google scholar
[27]
Krencik R, Weick J P, Liu Y, Zhang Z J, Zhang S C (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol, 29(6): 528-534
CrossRef Pubmed Google scholar
[28]
Lee G, Papapetrou E P, Kim H, Chambers S M, Tomishima M J, Fasano C A, Ganat Y M, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461(7262): 402-406
CrossRef Pubmed Google scholar
[29]
Lister R, Pelizzola M, Kida Y S, Hawkins R D, Nery J R, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson J A, Evans R M, Ecker J R (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336): 68-73
CrossRef Pubmed Google scholar
[30]
Mao Y, Ge X, Frank C L, Madison J M, Koehler A N, Doud M K, Tassa C, Berry E M, Soda T, Singh K K, Biechele T, Petryshen T L, Moon R T, Haggarty S J, Tsai L H (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell, 136(6): 1017-1031
CrossRef Pubmed Google scholar
[31]
Martin I, Dawson V L, Dawson T M (2011). Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet, 12(1): 301-325
CrossRef Pubmed Google scholar
[32]
Marchetto M C, Carromeu C, Acab A, Yu D, Yeo G W, Mu Y, Chen G, Gage F H, Muotri A R (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4): 527-39
[33]
Millar J K, Wilson-Annan J C, Anderson S, Christie S, Taylor M S, Semple C A, Devon R S, St Clair D M, Muir W J, Blackwood D H, Porteous D J (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet, 9(9): 1415-1423
CrossRef Pubmed Google scholar
[34]
Nguyen H N, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schüle B, Dolmetsch R E, Langston W, Palmer T D, Pera R R (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8(3): 267-280
CrossRef Pubmed Google scholar
[35]
Pang Z P, Yang N, Vierbuchen T, Ostermeier A, Fuentes D R, Yang T Q, Citri A, Sebastiano V, Marro S, Südhof T C, Wernig M (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359): 220-223
Pubmed
[36]
Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175): 141-146
CrossRef Pubmed Google scholar
[37]
Paşca S P, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Paşca A M, Cord B, Palmer T D, Chikahisa S, Nishino S, Bernstein J A, Hallmayer J, Geschwind D H, Dolmetsch R E (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med, 17(12): 1657-1662
CrossRef Pubmed Google scholar
[38]
Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA, 108(25): 10343-10348
CrossRef Pubmed Google scholar
[39]
Pomp O, Dreesen O, Leong D F, Meller-Pomp O, Tan T T, Zhou F, Colman A (2011). Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase. Cell Stem Cell, 9(2): 156-165
CrossRef Pubmed Google scholar
[40]
Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti W B, Moreno H, Abeliovich A (2011). Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell, 146(3): 359-371
CrossRef Pubmed Google scholar
[41]
Ross C A, Margolis R L, Reading S A, Pletnikov M, Coyle J T (2006). Neurobiology of schizophrenia. Neuron, 52(1): 139-153
CrossRef Pubmed Google scholar
[42]
Sachs N A, Sawa A, Holmes S E, Ross C A, DeLisi L E, Margolis R L (2005). A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry, 10(8): 758-764
CrossRef Pubmed Google scholar
[43]
Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci, 31(16): 5970-5976
CrossRef Pubmed Google scholar
[44]
Shi Y, Kirwan P, Smith J, Robinson H P, Livesey F J (2012). Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci, 15(3): 477-486
CrossRef Pubmed Google scholar
[45]
Slaugenhaupt S A, Blumenfeld A, Gill S P, Leyne M, Mull J, Cuajungco M P, Liebert C B, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod F B, Gusella J F (2001). Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet, 68(3): 598-605
CrossRef Pubmed Google scholar
[46]
Slaugenhaupt S A, Mull J, Leyne M, Cuajungco M P, Gill S P, Hims M M, Quintero F, Axelrod F B, Gusella J F (2003). Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet, 13(4): 429-436
CrossRef Pubmed Google scholar
[47]
Soldner F, Laganière J, Cheng A W, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe L I, Myers R H, Lindquist S, Zhang L, Guschin D, Fong L K, Vu B J, Meng X, Urnov F D, Rebar E J, Gregory P D, Zhang H S, Jaenisch R (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2): 318-331
CrossRef Pubmed Google scholar
[48]
Spitzer N C (2006). Electrical activity in early neuronal development. Nature, 444(7120): 707-712
CrossRef Pubmed Google scholar
[49]
St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, Gosden C, Evans H J (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336(8706): 13-16
CrossRef Pubmed Google scholar
[50]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861-872
CrossRef Pubmed Google scholar
[51]
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663-676
CrossRef Pubmed Google scholar
[52]
Tchieu J, Kuoy E, Chin M H, Trinh H, Patterson M, Sherman S P, Aimiuwu O, Lindgren A, Hakimian S, Zack J A, Clark A T, Pyle A D, Lowry W E, Plath K (2010). Female human iPSCs retain an inactive X chromosome. Cell Stem Cell, 7(3): 329-342
CrossRef Pubmed Google scholar
[53]
Tropea D, Giacometti E, Wilson N R, Beard C, McCurry C, Fu D D, Flannery R, Jaenisch R, Sur M (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA, 106(6): 2029-2034
CrossRef Pubmed Google scholar
[54]
Uhlhaas P J, Singer W (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2): 100-113
CrossRef Pubmed Google scholar
[55]
Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284): 1035-1041
CrossRef Pubmed Google scholar
[56]
Weinberger D R (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry, 44(7): 660-669
CrossRef Pubmed Google scholar
[57]
Yoo A S, Sun A X, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch R E, Tsien R W, Crabtree G R (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476(7359): 228-231
CrossRef Pubmed Google scholar
[58]
Yu J, Vodyanik M A, SmugaOtto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917-1920
CrossRef Pubmed Google scholar

Acknowledgments

The research in Drs. Ming and Song’s laboratories were supported by NIH, MSCRF, and March of Dimes. K.M.C was partially supported by MSCRF and Hopkins BSI.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(234 KB)

Accesses

Citations

Detail

Sections
Recommended

/