Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications

Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang

PDF(1520 KB)
PDF(1520 KB)
Front. Environ. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (2) : 31. DOI: 10.1007/s11783-019-1210-8
REVIEW ARTICLE
REVIEW ARTICLE

Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications

Author information +
History +

Highlights

• Principles and methods for fluorescence EEM are systematically outlined.

• Fluorophore peak/region/component and energy information can be extracted from EEM.

• EEM can fingerprint the physical/chemical/biological properties of DOM in MBRs.

• EEM is useful for tracking pollutant transformation and membrane retention/fouling.

• Improvements are still needed to overcome limitations for further studies.

Abstract

The membrane bioreactor (MBR) technology is a rising star for wastewater treatment. The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter (DOM) in the system. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, a powerful tool for the rapid and sensitive characterization of DOM, has been extensively applied in MBR studies; however, only a limited portion of the EEM fingerprinting information was utilized. This paper revisits the principles and methods of fluorescence EEM, and reviews the recent progress in applying EEM to characterize DOM in MBR studies. We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity, wavelength regional distribution, and spectral deconvolution (giving fluorescent component loadings/scores), and discussed how to use the information to interpret the chemical compositions, physiochemical properties, biological activities, membrane retention/fouling behaviors, and migration/transformation fates of DOM in MBR systems. In addition to conventional EEM indicators, novel fluorescent parameters are summarized for potential use, including quantum yield, Stokes shift, excited energy state, and fluorescence lifetime. The current limitations of EEM-based DOM characterization are also discussed, with possible measures proposed to improve applications in MBR monitoring.

Graphical abstract

Keywords

excitation-emission matrix (EEM) / dissolved organic matter (DOM) / membrane bioreactor (MBR) / fluorescence indicator / characterization method

Cite this article

Download citation ▾
Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications. Front. Environ. Sci. Eng., 2020, 14(2): 31 https://doi.org/10.1007/s11783-019-1210-8

References

[1]
Ahmad S R, Reynolds D M (1999). Monitoring of water quality using fluorescence technique: Prospect of on-line process control. Water Research, 33(9): 2069–2074
CrossRef Google scholar
[2]
Baghoth S A, Sharma S K, Amy G L (2011). Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC. Water Research, 45(2): 797–809
CrossRef Pubmed Google scholar
[3]
Bahram M, Bro R, Stedmon C, Afkhami A (2006). Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 20(3–4): 99–105
CrossRef Google scholar
[4]
Baker A (2001). Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environmental Science & Technology, 35(5): 948–953
CrossRef Pubmed Google scholar
[5]
Baker A (2002). Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent. Environmental Science & Technology, 36(7): 1377–1382
CrossRef Pubmed Google scholar
[6]
Baker A, Curry M (2004). Fluorescence of leachates from three contrasting landfills. Water Research, 38(10): 2605–2613
CrossRef Pubmed Google scholar
[7]
Baker A, Inverarity R (2004). Protein-like fluorescence intensity as a possible tool for determining river water quality. Hydrological Processes, 18(15): 2927–2945
CrossRef Google scholar
[8]
Beggs K M, Summers R S (2011). Character and chlorine reactivity of dissolved organic matter from a mountain pine beetle impacted watershed. Environmental Science & Technology, 45(13): 5717–5724
CrossRef Pubmed Google scholar
[9]
Bridgeman J, Baker A, Carliell-Marquet C, Carstea E (2013). Determination of changes in wastewater quality through a treatment works using fluorescence spectroscopy. Environmental Technology, 34(23): 3069–3077
CrossRef Pubmed Google scholar
[10]
Cai W, Liu J, Zhang X, Ng W J, Liu Y (2016). Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR. Water Research, 104: 44–52
CrossRef Pubmed Google scholar
[11]
Cai W, Liu J, Zhu X, Zhang X, Liu Y (2017). Fate of dissolved organic matter and byproducts generated from on-line chemical cleaning with sodium hypochlorite in MBR. Chemical Engineering Journal, 323: 233–242
CrossRef Google scholar
[12]
Cai W, Liu Y (2018). Comparative study of dissolved organic matter generated from activated sludge during exposure to hypochlorite, hydrogen peroxide, acid and alkaline: Implications for on-line chemical cleaning of MBR. Chemosphere, 193: 295–303
CrossRef Pubmed Google scholar
[13]
Carstea E M, Zakharova Y S, Bridgeman J (2018). Online fluorescence monitoring of effluent organic matter in wastewater treatment plants. Journal of Environmental Engineering, 144(5): 04018021
CrossRef Google scholar
[14]
Chen J, Gu B, Leboeuf E J, Pan H, Dai S (2002). Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 48(1): 59–68
CrossRef Pubmed Google scholar
[15]
Chen W, Westerhoff P, Leenheer J A, Booksh K (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37(24): 5701–5710
CrossRef Pubmed Google scholar
[16]
Chen W B, Smith D S, Guéguen C (2013). Influence of water chemistry and dissolved organic matter (DOM) molecular size on copper and mercury binding determined by multiresponse fluorescence quenching. Chemosphere, 92(4): 351–359
CrossRef Pubmed Google scholar
[17]
Christian E, Batista J R, Gerrity D (2017). Use of COD, TOC, and fluorescence spectroscopy to estimate BOD in wastewater. Water Environment Research, 89(2): 168–177
CrossRef Pubmed Google scholar
[18]
Clark C D, Jimenez-Morais J, Jones G II, Zanardi-Lamardo E, Moore C A, Zika R G (2002). A time-resolved fluorescence study of dissolved organic matter in a riverine to marine transition zone. Marine Chemistry, 78(2-3): 121–135
CrossRef Google scholar
[19]
Coble P G (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4): 325–346
CrossRef Google scholar
[20]
Cohen E, Levy G J, Borisover M (2014). Fluorescent components of organic matter in wastewater: efficacy and selectivity of the water treatment. Water Research, 55: 323–334
CrossRef Pubmed Google scholar
[21]
Cory R M, McKnight D M (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology, 39(21): 8142–8149
CrossRef Pubmed Google scholar
[22]
Cumberland S A, Baker A (2007). The freshwater dissolved organic matter fluorescence–total organic carbon relationship. Hydrological Processes, 21(16): 2093–2099
CrossRef Google scholar
[23]
Cuss C W, Guéguen C (2015). Relationships between molecular weight and fluorescence properties for size-fractionated dissolved organic matter from fresh and aged sources. Water Research, 68: 487–497
CrossRef Pubmed Google scholar
[24]
Deng L, Ngo H H, Guo W, Zhang H (2019). Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment. Water Research, 157: 155–166
CrossRef Pubmed Google scholar
[25]
Dong F, Zhao Q B, Zhao J B, Sheng G P, Tang Y, Tong Z H, Yu H Q, Li Y Y, Harada H (2010). Monitoring the restart-up of an upflow anaerobic sludge blanket (UASB) reactor for the treatment of a soybean processing wastewater. Bioresource Technology, 101(6): 1722–1726
CrossRef Pubmed Google scholar
[26]
DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350–356
CrossRef Google scholar
[27]
Echevarría C, Valderrama C, Cortina J L, Martín I, Arnaldos M, Bernat X, De la Cal A, Boleda M R, Vega A, Teuler A, Castellví E (2019). Techno-economic evaluation and comparison of PAC-MBR and ozonation-UV revamping for organic micro-pollutants removal from urban reclaimed wastewater. Science of the Total Environment, 671: 288–298
CrossRef Pubmed Google scholar
[28]
Figueiró C S M, Bastos De Oliveira D, Russo M R, Caires A R L, Rojas S S (2018). Fish farming water quality monitored by optical analysis: The potential application of UV–Vis absorption and fluorescence spectroscopy. Aquaculture, 490: 91–97
CrossRef Google scholar
[29]
Gabor R S, Baker A, Mcknight D M, Miller M P (2014). Aquatic Organic Matter Fluorescence. Coble, P.G., Lead, J., Baker, A., Reynolds, D.M. and Spencer, R.G.M. (eds): Cambridge Univ Press, the Pitt Building, Trumpington St., Cambridge Cb2 1rp, Cambs, Uk, 303–338
[30]
Goletz C, Wagner M, Grübel A, Schmidt W, Korf N, Werner P (2011). Standardization of fluorescence excitation-emission-matrices in aquatic milieu. Talanta, 85(1): 650–656
CrossRef Pubmed Google scholar
[31]
Gu H, Shi H, Sun Y, Lv R, Liu S, Li S (2018). Device for intelligently performing on-line detection frying oil e.g. palm oil, has emission window connected with fluorescence detector, and data processing device connected with fluorescence detector through data transmission line: UNIV CHUZHOU (UYCH-Non-standard)
[32]
Guan Y F, Qian C, Chen W, Huang B C, Wang Y J, Yu H Q (2018). Interaction between humic acid and protein in membrane fouling process: A spectroscopic insight. Water Research, 145: 146–152
CrossRef Pubmed Google scholar
[33]
Guo X, Yu H, Yan Z, Gao H, Zhang Y (2018). Tracking variations of fluorescent dissolved organic matter during wastewater treatment by accumulative fluorescence emission spectroscopy combined with principal component, second derivative and canonical correlation analyses. Chemosphere, 194: 463–470
CrossRef Pubmed Google scholar
[34]
Hao R, Ren H, Li J, Ma Z, Wan H, Zheng X, Cheng S (2012). Use of three-dimensional excitation and emission matrix fluorescence spectroscopy for predicting the disinfection by-product formation potential of reclaimed water. Water Research, 46(17): 5765–5776
CrossRef Pubmed Google scholar
[35]
Hazrati H, Jahanbakhshi N, Rostamizadeh M (2018). Fouling reduction in the membrane bioreactor using synthesized zeolite nano-adsorbents. Journal of Membrane Science, 555: 455–462
CrossRef Google scholar
[36]
He X S, Xi B D, Li X, Pan H W, An D, Bai S G, Li D, Cui D Y (2013). Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification. Chemosphere, 93(9): 2208–2215
CrossRef Pubmed Google scholar
[37]
He X S, Xi B D, Wei Z M, Jiang Y H, Yang Y, An D, Cao J L, Liu H L (2011). Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates. Journal of Hazardous Materials, 190(1-3): 293–299
CrossRef Pubmed Google scholar
[38]
Henderson R K, Baker A, Murphy K R, Hambly A, Stuetz R M, Khan S J (2009). Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Research, 43(4): 863–881
CrossRef Pubmed Google scholar
[39]
Hua B, Veum K, Yang J, Jones J, Deng B (2010). Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters. Environmental Monitoring and Assessment, 161(1-4): 71–81
CrossRef Pubmed Google scholar
[40]
Huang X, Xiao K, Shen Y (2010). Recent advances in membrane bioreactor technology for wastewater treatment in China. Frontiers of Environmental Science & Engineering in China, 4(3): 245–271
CrossRef Google scholar
[41]
Huber S A, Balz A, Abert M, Pronk W (2011). Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography--organic carbon detection—organic nitrogen detection (LC-OCD-OND). Water Research, 45(2): 879–885
CrossRef Pubmed Google scholar
[42]
Hudson N, Baker A, Reynolds D (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters: A review. River Research and Applications, 23(6): 631–649
CrossRef Google scholar
[43]
Hudson N, Baker A, Ward D, Reynolds D M, Brunsdon C, Carliell-Marquet C, Browning S (2008). Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England. Science of the Total Environment, 391(1): 149–158
CrossRef Pubmed Google scholar
[44]
Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond J M, Parlanti E (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706–719
CrossRef Google scholar
[45]
Hur J, Cho J (2012). Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices. Sensors (Basel), 12(1): 972–986
CrossRef Pubmed Google scholar
[46]
Ignatev A, Tuhkanen T (2019). Monitoring WWTP performance using size-exclusion chromatography with simultaneous UV and fluorescence detection to track recalcitrant wastewater fractions. Chemosphere, 214: 587–597
CrossRef Pubmed Google scholar
[47]
Ishii S K, Boyer T H (2012). Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environmental Science & Technology, 46(4): 2006–2017
CrossRef Pubmed Google scholar
[48]
Jacquin C, Gambier N, Lesage G, Heran M (2018a). New insight into fate and fouling behavior of bulk Dissolved Organic Matter (DOM) in a full-scale membrane bioreactor for domestic wastewater treatment. Journal of Water Process Engineering, 22: 94–102
CrossRef Google scholar
[49]
Jacquin C, Lesage G, Traber J, Pronk W, Heran M (2017). Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Research, 118: 82–92
CrossRef Pubmed Google scholar
[50]
Jacquin C, Monnot M, Hamza R, Kouadio Y, Zaviska F, Merle T, Lesage G, Héran M (2018b). Link between dissolved organic matter transformation and process performance in a membrane bioreactor for urinary nitrogen stabilization. Environmental Science: Water Research & Technology, 4(6): 806–819
CrossRef Google scholar
[51]
Jacquin C, Teychene B, Lemee L, Lesage G, Heran M (2018c). Characteristics and fouling behaviors of dissolved organic matter fractions in a full-scale submerged membrane bioreactor for municipal wastewater treatment. Biochemical Engineering Journal, 132: 169–181
CrossRef Google scholar
[52]
Jia S, Han H, Hou B, Zhuang H, Fang F, Zhao Q (2014). Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system. Chemosphere, 117: 753–759
CrossRef Pubmed Google scholar
[53]
Kimura K, Naruse T, Watanabe Y (2009). Changes in characteristics of soluble microbial products in membrane bioreactors associated with different solid retention times: Relation to membrane fouling. Water Research, 43(4): 1033–1039
CrossRef Pubmed Google scholar
[54]
Kothawala D N, Murphy K R, Stedmon C A, Weyhenmeyer G A, Tranvik L J (2013). Inner filter correction of dissolved organic matter fluorescence. Limnology and Oceanography: Methods, 11(12): 616–630
CrossRef Google scholar
[55]
Lakowicz J R (2006). Principles of fluorescence spectroscopy. 3rd. Baltimore: Springer
[56]
Lawaetz A J, Stedmon C A (2009). Fluorescence intensity calibration using the Raman scatter peak of water. Applied Spectroscopy, 63(8): 936–940
CrossRef Pubmed Google scholar
[57]
Lee M H, Ok Y S, Hur J (2018). Dynamic variations in dissolved organic matter and the precursors of disinfection by-products leached from biochars: Leaching experiments simulating intermittent rain events. Environmental Pollution, 242(Part B): 1912–1920
[58]
Leenheer J A, Croué J P (2003). Characterizing aquatic dissolved organic matter. Environmental Science & Technology, 37(1): 18A–26A
CrossRef Pubmed Google scholar
[59]
Li N, Hu Y, Lu Y Z, Zeng R J, Sheng G P (2016). In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment. Applied Microbiology and Biotechnology, 100(13): 6081–6089
CrossRef Pubmed Google scholar
[60]
Li W T, Chen S Y, Xu Z X, Li Y, Shuang C D, Li A M (2014). Characterization of dissolved organic matter in municipal wastewater using fluorescence PARAFAC analysis and chromatography multi-excitation/emission scan: A comparative study. Environmental Science & Technology, 48(5): 2603–2609
CrossRef Pubmed Google scholar
[61]
Lin H J, Peng W, Zhang M J, Chen J R, Hong H C, Zhang Y (2013). A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination, 314: 169–188
CrossRef Google scholar
[62]
Liu N, Xie X, Jiang H, Yang F, Yu C, Liu J (2016). Characteristics of estrogenic/antiestrogenic activities during the anoxic/aerobic biotreatment process of simulated textile dyeing wastewater. RSC Advances, 6(30): 25624–25632
CrossRef Google scholar
[63]
Liu T, Chen Z L, Yu W Z, You S J (2011). Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy. Water Research, 45(5): 2111–2121
CrossRef Pubmed Google scholar
[64]
Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1): 265–275
Pubmed
[65]
Lu Y Z, Li N, Ding Z W, Fu L, Bai Y N, Sheng G P, Zeng R J (2017). Tracking the activity of the Anammox-DAMO process using excitation-emission matrix (EEM) fluorescence spectroscopy. Water Research, 122: 624–632
CrossRef Pubmed Google scholar
[66]
Luciani X, Mounier S, Redon R, Bois A (2009). A simple correction method of inner filter effects affecting FEEM and its application to the PARAFAC decomposition. Chemometrics and Intelligent Laboratory Systems, 96(2): 227–238
CrossRef Google scholar
[67]
Ly Q V, Hur J (2018). Further insight into the roles of the chemical composition of dissolved organic matter (DOM) on ultrafiltration membranes as revealed by multiple advanced DOM characterization tools. Chemosphere, 201: 168–177
CrossRef Pubmed Google scholar
[68]
Ma C, Xu H, Zhang L, Pei H, Jin Y (2018). Use of fluorescence excitation-emission matrices coupled with parallel factor analysis to monitor C- and N-DBPs formation in drinking water recovered from cyanobacteria-laden sludge dewatering. Science of the Total Environment, 640-641: 609–618
CrossRef Pubmed Google scholar
[69]
Ma D, Gao Y, Gao B, Wang Y, Yue Q, Li Q (2014). Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent. Chemosphere, 117: 338–344
CrossRef Pubmed Google scholar
[70]
Maqbool T, Cho J, Hur J (2017). Dynamic changes of dissolved organic matter in membrane bioreactors at different organic loading rates: Evidence from spectroscopic and chromatographic methods. Bioresource Technology, 234: 131–139
CrossRef Pubmed Google scholar
[71]
Maqbool T, Quang V L, Cho J, Hur J (2016). Characterizing fluorescent dissolved organic matter in a membrane bioreactor via excitation-emission matrix combined with parallel factor analysis. Bioresource Technology, 209: 31–39
CrossRef Pubmed Google scholar
[72]
Marhaba T F, Van D, Lippincott R L (2000). Rapid identification of dissolved organic matter fractions in water by spectral fluorescent signatures. Water Research, 34(14): 3543–3550
CrossRef Google scholar
[73]
McKnight D M, Boyer E W, Westerhoff P K, Doran P T, Kulbe T, Andersen D T (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46(1): 38–48
CrossRef Google scholar
[74]
Meng B Y, Li X Y (2019). In situ visualization of concentration polarization during membrane ultrafiltration using microscopic laser-induced fluorescence. Environmental Science & Technology, 53(5): 2660–2669
CrossRef Pubmed Google scholar
[75]
Meng F, Zhang S, Oh Y, Zhou Z, Shin H S, Chae S R (2017). Fouling in membrane bioreactors: An updated review. Water Research, 114: 151–180
CrossRef Pubmed Google scholar
[76]
Menniti A, Morgenroth E (2010). The influence of aeration intensity on predation and EPS production in membrane bioreactors. Water Research, 44(8): 2541–2553
CrossRef Pubmed Google scholar
[77]
Miller M P, McKnight D M, Cory R M, Williams M W, Runkel R L (2006). Hyporheic exchange and fulvic acid redox reactions in an Alpine stream/wetland ecosystem, Colorado Front Range. Environmental Science & Technology, 40(19): 5943–5949
CrossRef Pubmed Google scholar
[78]
Mobed J J, Hemmingsen S L, Autry J L, McGown L B (1996). Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environmental Science & Technology, 30(10): 3061–3065
CrossRef Google scholar
[79]
Mu S, Wang S, Liang S, Xiao K, Fan H, Han B, Liu C, Wang X, Huang X (2019). Effect of the relative degree of foulant “hydrophobicity” on membrane fouling. Journal of Membrane Science, 570–571: 1–8
CrossRef Google scholar
[80]
Murphy K R, Bro R, Stedmon C A (2014). Aquatic Organic Matter Fluorescence. Baker, A., Reynolds, D.M., Lead, J., Coble, P.G. and Spencer, R.G.M. (eds). Cambridge: Cambridge University Press, 339–375
[81]
Murphy K R, Stedmon C A, Graeber D, Bro R (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23): 6557–6566
CrossRef Google scholar
[82]
Parlanti E, Wörz K, Geoffroy L, Lamotte M (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12): 1765–1781
CrossRef Google scholar
[83]
Peiris R H, Budman H, Moresoli C, Legge R L (2010a). Understanding fouling behaviour of ultrafiltration membrane processes and natural water using principal component analysis of fluorescence excitation-emission matrices. Journal of Membrane Science, 357(1–2): 62–72
CrossRef Google scholar
[84]
Peiris R H, Hallé C, Budman H, Moresoli C, Peldszus S, Huck P M, Legge R L (2010b). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 44(1): 185–194
CrossRef Pubmed Google scholar
[85]
Qian C, Chen W, Li W H, Yu H Q (2017a). A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor for municipal wastewater treatment. Frontiers of Environmental Science & Engineering, 11(4): 12
CrossRef Google scholar
[86]
Qian C, Wang L F, Chen W, Wang Y S, Liu X Y, Jiang H, Yu H Q (2017b). Fluorescence approach for the determination of fluorescent dissolved organic matter. Analytical Chemistry, 89(7): 4264–4271
CrossRef Pubmed Google scholar
[87]
Quang V L, Kim H C, Maqbool T, Hur J (2016). Fate and fouling characteristics of fluorescent dissolved organic matter in ultrafiltration of terrestrial humic substances. Chemosphere, 165: 126–133
CrossRef Pubmed Google scholar
[88]
Reynolds D M (2003). Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy. Water Research, 37(13): 3055–3060
CrossRef Pubmed Google scholar
[89]
Reynolds D M, Ahmad S R (1997). Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Research, 31(8): 2012–2018
CrossRef Google scholar
[90]
Ruscalleda M, Seredynska-Sobecka B, Ni B J, Arvin E, Balaguer M D, Colprim J, Smets B F (2014). Spectrometric characterization of the effluent dissolved organic matter from an anammox reactor shows correlation between the EEM signature and anammox growth. Chemosphere, 117: 271–277
CrossRef Pubmed Google scholar
[91]
Sheng G P, Yu H Q (2006). Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 40(6): 1233–1239
CrossRef Pubmed Google scholar
[92]
Singh S, Henderson R K, Baker A, Stuetz R M, Khan S J (2015). Online fluorescence monitoring of RO fouling and integrity: analysis of two contrasting recycled water schemes. Environmental Science: Water Research & Technology, 1(5): 689–698
CrossRef Google scholar
[93]
Stedmon C A, Markager S, Bro R (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3–4): 239–254
CrossRef Google scholar
[94]
Świetlik J, Sikorska E (2004). Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone. Water Research, 38(17): 3791–3799
CrossRef Pubmed Google scholar
[95]
Tan X, Acquah I, Liu H, Li W, Tan S (2019). A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere, 220: 1150–1162
CrossRef Google scholar
[96]
Tang S, Wang Z, Wu Z, Zhou Q (2010). Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment. Journal of Hazardous Materials, 178(1-3): 377–384
CrossRef Pubmed Google scholar
[97]
Valeur B, Berberan-Santos M N (2012). Molecular Fluorescence: Principles and Applications. 2nd. Weinheim, Germany: Wiley-VCH
[98]
Wang H, Ding A, Gan Z, Qu F, Cheng X, Bai L, Guo S, Li G, Liang H (2017). Fluorescent natural organic matter responsible for ultrafiltration membrane fouling: Fate, contributions and fouling mechanisms. Chemosphere, 182: 183–193
CrossRef Pubmed Google scholar
[99]
Wang J, Li K, Wei Y, Cheng Y, Wei D, Li M (2015). Performance and fate of organics in a pilot MBR-NF for treating antibiotic production wastewater with recycling NF concentrate. Chemosphere, 121: 92–100
CrossRef Pubmed Google scholar
[100]
Wang M, Chen Y (2018). Generation and characterization of DOM in wastewater treatment processes. Chemosphere, 201: 96–109
CrossRef Pubmed Google scholar
[101]
Wang Z, Ma J, Tang C Y, Kimura K, Wang Q, Han X (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468: 276–307
CrossRef Google scholar
[102]
Wang Z, Wu Z, Tang S (2009). Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 43(6): 1533–1540
CrossRef Pubmed Google scholar
[103]
Watson K, Farré M J, Leusch F D L, Knight N (2018). Using fluorescence-parallel factor analysis for assessing disinfection by-product formation and natural organic matter removal efficiency in secondary treated synthetic drinking waters. Science of the Total Environment, 640-641: 31–40
CrossRef Pubmed Google scholar
[104]
Wells M J M, Mullins G A, Bell K Y, Da Silva A K, Navarrete E M (2017). Fluorescence and quenching assessment (EEM-PARAFAC) of de facto potable reuse in the Neuse River, North Carolina, United States. Environmental Science & Technology, 51(23): 13592–13602
CrossRef Pubmed Google scholar
[105]
Wold S, Esbensen K, Geladi P (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3): 37–52
CrossRef Google scholar
[106]
Wu B, Kitade T, Chong T H, Uemura T, Fane A G (2013). Impact of membrane bioreactor operating conditions on fouling behavior of reverse osmosis membranes in MBR–RO processes. Desalination, 311: 37–45
CrossRef Google scholar
[107]
Wünsch U J, Murphy K R, Stedmon C A (2015). Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition. Frontiers in Marine Science, 2: 98
CrossRef Google scholar
[108]
Xia S, Zhou L, Zhang Z, Hermanowicz S W (2015). Removal mechanism of low-concentration Cr (VI) in a submerged membrane bioreactor activated sludge system. Applied Microbiology and Biotechnology, 99(12): 5351–5360
CrossRef Pubmed Google scholar
[109]
Xiao K, Han B, Sun J, Tan J, Yu J, Liang S, Shen Y, Huang X (2019a). Stokes shift and specific fluorescence as potential indicators of organic matter hydrophobicity and molecular weight in membrane bioreactors. Environmental Science & Technology, 53(15): 8985–8993
CrossRef Pubmed Google scholar
[110]
Xiao K, Liang S, Wang X, Chen C, Huang X (2019b). Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresource Technology, 271: 473–481
CrossRef Pubmed Google scholar
[111]
Xiao K, Liang S, Xiao A, Lei T, Tan J, Wang X, Huang X (2018a). Fluorescence quotient of excitation–emission matrices as a potential indicator of organic matter behavior in membrane bioreactors. Environmental Science: Water Research & Technology, 4(2): 281–290
CrossRef Google scholar
[112]
Xiao K, Shen Y, Liang S, Tan J, Wang X, Liang P, Huang X (2018b). Characteristic regions of the fluorescence excitation-emission matrix (EEM) to identify hydrophobic/hydrophilic contents of organic matter in membrane bioreactors. Environmental Science & Technology, 52(19): 11251–11258
CrossRef Pubmed Google scholar
[113]
Xiao K, Shen Y, Sun J, Liang S, Fan H, Tan J, Wang X, Huang X, Waite T D (2018c). Correlating fluorescence spectral properties with DOM molecular weight and size distribution in wastewater treatment systems. Environmental Science: Water Research & Technology, 4(12): 1933–1943
CrossRef Google scholar
[114]
Xiao K, Shen Y X, Liang S, Liang P, Wang X M, Huang X (2014). A systematic analysis of fouling evolution and irreversibility behaviors of MBR supernatant hydrophilic/hydrophobic fractions during microfiltration. Journal of Membrane Science, 467: 206–216
CrossRef Google scholar
[115]
Xiao K, Sun J Y, Shen Y X, Liang S, Liang P, Wang X M, Huang X (2016). Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch. RSC Advances, 6(29): 24050–24059
CrossRef Google scholar
[116]
Yan X, Xiao K, Liang S, Lei T, Liang P, Xue T, Yu K, Guan J, Huang X (2015). Hydraulic optimization of membrane bioreactor via baffle modification using computational fluid dynamics. Bioresource Technology, 175: 633–637
CrossRef Pubmed Google scholar
[117]
Yang L, Kim D, Uzun H, Karanfil T, Hur J (2015). Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis. Chemosphere, 121: 84–91
CrossRef Pubmed Google scholar
[118]
Yang X, Meng L, Meng F (2019). Combination of self-organizing map and parallel factor analysis to characterize the evolution of fluorescent dissolved organic matter in a full-scale landfill leachate treatment plant. Science of the Total Environment, 654: 1187–1195
CrossRef Pubmed Google scholar
[119]
Yu H, Qu F, Sun L, Liang H, Han Z, Chang H, Shao S, Li G (2015). Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): Characterized by fluorescence excitation emission matrix coupled with parallel factor analysis. Chemosphere, 121: 101–109
CrossRef Pubmed Google scholar
[120]
Yu H, Wu Z, Zhang X, Qu F, Wang P, Liang H (2019). Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix (FF-EEM) spectroscopy: Fouling evolution and mechanism analysis. Water Research, 148: 546–555
CrossRef Pubmed Google scholar
[121]
Yu M D, He X S, Xi B D, Gao R T, Zhao X W, Zhang H, Huang C H, Tan W (2018). Investigating the composition characteristics of dissolved and particulate/colloidal organic matter in effluent-dominated stream using fluorescence spectroscopy combined with multivariable analysis. Environmental Science and Pollution Research International, 25(9): 9132–9144
CrossRef Pubmed Google scholar
[122]
Zhang D, Trzcinski A P, Luo J, Stuckey D C, Tan S K (2018). Fate and behavior of dissolved organic matter in a submerged anoxic-aerobic membrane bioreactor (MBR). Environmental Science and Pollution Research International, 25(5): 4289–4302
CrossRef Pubmed Google scholar
[123]
Zhou Y, Shi K, Zhang Y, Jeppesen E, Liu X, Zhou Q, Wu H, Tang X, Zhu G (2017). Fluorescence peak integration ratio IC:IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter. Science of the Total Environment, 574: 1588–1598
CrossRef Pubmed Google scholar
[124]
Zhuo M, Abass O K, Zhang K (2018). New insights into the treatment of real N,N-dimethylacetamide contaminated wastewater using a membrane bioreactor and its membrane fouling implications. RSC Advances, 8(23): 12799–12807
CrossRef Google scholar
[125]
Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1): 45–50
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51778599), the Beijing Natural Science Foundation (No. L182044), the CAS Strategic Priority Research Programmer (A) (No. XDA20050103), and the Youth Innovation Promotion Association CAS (No. 110500EA62).

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1520 KB)

Accesses

Citations

Detail

Sections
Recommended

/