Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 1     https://doi.org/10.1007/s11783-017-0938-2
RESEARCH ARTICLE |
Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination
Yu Liu, Qiao Zhang, Yu Hong()
Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
Download: PDF(368 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

SAP mainly are aromatic proteins and soluble microbial by-product-like.

[DBP] increased with cultivation time and [SAP] increasing.

The formation potential trend of DBP is as follows: TCM>DCAA>TCAA.

When microalgae are simultaneously applied for wastewater treatment and lipid production, soluble algal products (SAP) should be paid much attention, as they are important precursors for formation of disinfection byproducts (DBPs), which have potential risks for human health. Chlorella sp. HQ is an oleaginous microalga that can generate SAP during growth, especially in the exponential phase. This study investigated the contribution of SAP from Chlorella sp. HQ to DBP formation after chlorination. The predominant DBP precursors from SAP were identified with the 3D excitation-emission matrix fluorescence. After chlorination, a significant reduction was observed in the fluorescence intensity of five specific fluorescence regions, particularly aromatic proteins and soluble microbial by-product-like regions, accompanied with slight shifting of the peak. The produced DBPs were demonstrated to include trihalomethanes and haloacetic acids. As the algal cultivation time was extended in wastewater, the accumulated SAP strengthened the formation of DBPs. The trend for DBP formation was as follows: chloroform>dichloroacetic acid>trichloroacetic acid.

Keywords Chlorella sp. HQ      Chlorination      Disinfection byproducts      Fluorescence spectroscopy      Soluble algal products     
Corresponding Authors: Yu Hong   
Issue Date: 10 May 2017
 Cite this article:   
Yu Liu,Qiao Zhang,Yu Hong. Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination[J]. Front. Environ. Sci. Eng., 2017, 11(6): 1.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-017-0938-2
http://journal.hep.com.cn/fese/EN/Y2017/V11/I6/1
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Liu
Qiao Zhang
Yu Hong
Fig.1  Growth curve of Chlorella sp. HQ cultivated in simulate secondary effluent (mBG11)
Fig.2  Change in (a) SAP concentration, (b) SAP production rate and cell growth rate as cultivation time was extended
Fig.3  Relationship between algal density and SAP concentration at 15–30 d
Fig.4  3D-EEM for the SAP of Chlorella sp. HQ at cultivation of 15, 20, and 25 d before and after chlorination
Cl2 /(mg·L-1)cultivation time/dIIIIIIIVV
Ex/Em /(nm/nm)FI/AUEx/Em /(nm/nm)FI/AUEx/Em /(nm/nm)FI/AUEx/Em /(nm/nm)FI/AUEx/Em /(nm/nm)FI/AU
015225/3263552225/3353684225/3811260280/3352778275/382845
20225/3304224225/3344227225/3811453280/3343361275/381936
25225/3304224225/3344227225/3811453280/3343361280/381990
1015205/311603200/339507210/397429280/309788260/453324
20225/329709225/331618250/453444275/304781255/470462
25220/303494225/333533250/454492275/304763255/462545
Tab.1  Fluorescence characteristics of the SAP from Chlorella sp. HQ at different growth stages before and after chlorination
Fig.5  DBP formation from SAP of Chlorella sp. HQ at exponential and stationary phases
Fig.6  Formation potential of DBP from SAP of Chlorella sp. HQ at exponential and stationary phases
1 Wang W D, Yang H W, Wang X C, Jiang J, Zhu W P. Effects of fulvic acid and humic acid on aluminum speciation in drinking water. Journal of Environmental Sciences (China), 2010, 22(2): 211–217
https://doi.org/10.1016/S1001-0742(09)60095-4 pmid: 20397408
2 Zhang X N, Guo Q P, Shen X X, Yu S W, Qiu G Y. Water quality, agriculture and food safety in China: current situation, trends, interdependencies, and management. Integrative Agriculture, 2015, 14(11): 2365–2379
https://doi.org/10.1016/S2095-3119(15)61128-5
3 Lin Y W, Li D, Zeng S Y, He M. Changes of microbial composition during wastewater reclamation and distribution systems revealed by highthroughput sequencing analyses. Frontiers of Environmental Science & Engineering, 2016, 10(3): 539–547 
https://doi.org/10.1007/s11783-016-0830-5
4 Hoh D H, Watson S, Kan E S. Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review. Chemical Engineering Journal, 2016, 287(1): 466–473
https://doi.org/10.1016/j.cej.2015.11.062
5 Gao F, Yang Z H, Li C, Zeng G M, Ma D H, Zhou L. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresource Technology, 2015, 179(179): 8–12
https://doi.org/10.1016/j.biortech.2014.11.108 pmid: 25514396
6 Olofsson M, Lindehoff E, Frick B, Svensson F, Legrand C. Baltic Sea microalgae transform cement flue gas into valuable biomass. Algal Research, 2015, 11: 227–233
https://doi.org/10.1016/j.algal.2015.07.001
7 Zhang C M, Zhang Y L, Zhuang B L, Zhou X F. Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater  treatment.  Bioresource Technology, 2014, 171: 71–79
https://doi.org/10.1016/j.biortech.2014.07.060 pmid: 25189511
8 Chen H, Qiu T, Rong J F, He C L, Wang Q. Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects. Applied Energy, 2015, 155: 585–598
https://doi.org/10.1016/j.apenergy.2015.06.055
9 Pang Y C, Huang J J, Xi J Y, Hu H Y, Zhu Y. Effect of ultraviolet irradiation and chlorination on ampicillin-resistant Escherichia coli and its ampicillin resistance gene. Frontiers of Environmental Science & Engineering, 2016, 10(3): 522–530
https://doi.org/10.1007/s11783-015-0779-9
10 Bahman R. Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resources & Industry, 2014, 6: 36–50 
https://doi.org/10.1016/j.wri.2014.07.001
11 Zhu M Q, Gao N Y, Chu W H, Zhou S Q, Zhang Z D, Xu Y Q, Dai Q. Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 2015, 120: 256–262 
https://doi.org/10.1016/j.ecoenv.2015.05.048 pmid: 26093107
12 Chu W H, Yao D C, Gao N Y, Bond T, Templeton M R. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment. Chemosphere, 2015, 141(23): 1–6
https://doi.org/10.1016/j.chemosphere.2015.05.087 pmid: 26065622
13 Ou T Y, Wang G S. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells. Chemosphere, 2016, 150: 109–115
https://doi.org/10.1016/j.chemosphere.2016.01.124 pmid: 26894677
14 Liao X B, Liu J J, Yang M L, Ma H F, Yuan B L, Huang C H. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species—Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana. Science of the Total Environment, 2015, 532: 540–547
https://doi.org/10.1016/j.scitotenv.2015.06.038 pmid: 26100733
15 Yang X, Guo W, Shen Q. Formation of disinfection byproducts from chlor(am)ination of algal organic matter. Journal of Hazardous Materials, 2011, 197(6): 378–388
https://doi.org/10.1016/j.jhazmat.2011.09.098 pmid: 22019108
16 Nguyen M L, Paul Westerhoff P E, Baker L, Hu Q, Esparza-Soto M, Sommerfeld M. Characteristics and reactivity of algae-produced dissolved organic carbon. Journal of Environmental Engineering, 2005, 131(11): 1574–1582
https://doi.org/10.1061/(ASCE)0733-9372(2005)131:11(1574)
17 Zhuang L L, Wu Y H, Espinosa V M D, Zhang T Y, Dao G H, Hu H Y. Soluble Algal Products (SAPs) in large scale cultivation of microalgae for biomass/bioenergy production: a review. Renewable & Sustainable Energy Reviews, 2016, 59: 141–148 
https://doi.org/10.1016/j.rser.2015.12.352
18 Wardlaw V E, Perry R, Graham N J D. The role of algae as trihalomethane precursors: a review. Journal of Water Supply: Research & Technology- Aqua, 1991, 40(6): 335–345
19 Abd El-Aty A M, Ibrahim M B M, El-Dib M A, Radwan E K. Influence of chlorine on algae as precursors for trihalomethane and haloacetic acid production. World Applied Sciences Journal, 2009, 6(9): 1215–1220
20 Zhan J J, Zhang Q, Qin M M, Hong Y. Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production. Frontiers of Environmental Science & Engineering, 2016, 10(3): 548–558
https://doi.org/10.1007/s11783-016-0831-4
21 Li X, Hu H Y, Ke G, Sun Y X. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 2010, 101(14): 5494–5500
https://doi.org/10.1016/j.biortech.2010.02.016 pmid: 20202827
22 Wu Q Y, Hu H Y, Zhao X, Li Y. Effects of chlorination on the properties of dissolved organic matter and its genotoxicity in secondary sewage effluent under two different ammonium concentrations. Chemosphere, 2010, 80(8): 941–946
https://doi.org/10.1016/j.chemosphere.2010.05.005 pmid: 20627356
23 Chen W, Westerhoff P, Leenheer J A, Booksh K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 2003 37(24): 5701–5710
https://doi.org/10.1021/es034354c pmid: 14717183
24 USEPA. Method 551.1. Determination of chlorination disinfection byproducts, chlorinated solvents and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromotography with electron capture detection (Revision 1.0). National Exposure Research Laboratory Office of Research and Development. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1995
25 USEPA. Method 552.2. Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization and gas chromatography with electron capture detection (Revision 1.0). National Exposure Research Laboratory Office of Research and Development. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1995
26 Yu Y, Hu H Y, Li X, Wu Y H, Zhang X, Jia S L. Accumulation characteristics of soluble algal products (SAP) by a freshwater microalga Scenedesmus sp. LX1 during batch cultivation for biofuel production. Bioresource Technology, 2012, 110(2): 184–189
https://doi.org/10.1016/j.biortech.2011.11.023 pmid: 22322147
27 Hulatt C J, Thomas D N. Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? Bioresource Technology, 2010, 101(22): 8690–8697
https://doi.org/10.1016/j.biortech.2010.06.086 pmid: 20634058
28 Wang L S, Hu H Y, Wang C. Effect of ammonia nitrogen and dissolved organic matter fractions on the genotoxicity of wastewater effluent during chlorine disinfection. Environmental Science & Technology, 2007, 41(1): 160–165
https://doi.org/10.1021/es0616635 pmid: 17265942
29 Korshin G V, Kumke M U, Li C W, Frimmel F H. Influence of chlorination on chromophores and fluorophores in humic substances. Environmental Science & Technology, 1999, 33(8): 1207–1212
https://doi.org/10.1021/es980787h
Related articles from Frontiers Journals
[1] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[2] Dawei Liang, Shanquan Wang. Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs[J]. Front. Environ. Sci. Eng., 2017, 11(6): 2-.
[3] Yuchen PANG,Jingjing HUANG,Jinying XI,Hongying HU,Yun ZHU. Effect of ultraviolet irradiation and chlorination on ampicillin-resistant Escherichia coli and its ampicillin resistance gene[J]. Front. Environ. Sci. Eng., 2016, 10(3): 522-530.
[4] Jiangkun DU,Jianguo BAO,Wei HU. Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode[J]. Front. Environ. Sci. Eng., 2015, 9(5): 919-928.
[5] Bhanukiran SUNKARA,Yang SU,Jingjing ZHAN,Jibao HE,Gary L. MCPHERSON,Vijay T. JOHN. Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons[J]. Front. Environ. Sci. Eng., 2015, 9(5): 939-947.
[6] Man ZHANG,Feng HE,Dongye ZHAO. Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic structure and nature of adsorption[J]. Front. Environ. Sci. Eng., 2015, 9(5): 888-896.
[7] Xiaomao WANG,Yuqin MAO,Shun TANG,Hongwei YANG,Yuefeng F. XIE. Disinfection byproducts in drinking water and regulatory compliance: A critical review[J]. Front. Environ. Sci. Eng., 2015, 9(1): 3-15.
[8] Yang PAN,Xiangru ZHANG,Jianping ZHAI. Whole pictures of halogenated disinfection byproducts in tap water from China’s cities[J]. Front. Environ. Sci. Eng., 2015, 9(1): 121-130.
[9] Xiaomao WANG,Garcia Leal M I,Xiaolu ZHANG,Hongwei YANG,Yuefeng XIE. Haloacetic acids in swimming pool and spa water in the United States and China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 820-824.
[10] Qiao ZHANG,Yu HONG. Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions[J]. Front.Environ.Sci.Eng., 2014, 8(5): 703-709.
[11] Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
[12] Wenjun LIU, Shaoying QI, . Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination[J]. Front.Environ.Sci.Eng., 2010, 4(1): 65-72.
[13] QIANG Zhimin, BEN Weiwei, HUANG Chin-Pao. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform[J]. Front.Environ.Sci.Eng., 2008, 2(4): 397-409.
[14] CHENG Rong, WANG Jianlong, ZHANG Weixian. Degradation of chlorinated phenols by nanoscale zero-valent iron[J]. Front.Environ.Sci.Eng., 2008, 2(1): 103-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed