Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 2     DOI: 10.1007/s11783-017-0909-7
RESEARCH ARTICLE |
Scientifically advanced woody media for improved water quality from livestock woodchip heavy-use areas
Laura Christianson1(), David DeVallance2, Joshua Faulkner3, Thomas Basden4
1. Crop Sciences, University of Illinois, Urbana, IL 61801, USA
2. Wood Science and Technology, West Virginia University, Morgantown, WV 26506, USA
3. University of Vermont Extension, UVM Center for Sustainable Agriculture, Burlington, VT 05401, USA
4. West Virginia University Extension, West Virginia University, Morgantown, WV 26506, USA
Download: PDF(316 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A column study showed woody media reduced liquid waste volume compared to gravel.

Mixtures of torrefied wood and biochar improved nutrient concentration reductions.

Total N removal was improved by retaining the liquid in the wood media for 48 h.

Unmodified Mixed Hardwood may be most cost effective HUA media.

Overwintering cattle on pastures in many areas can damage the pasture and lead to impaired water quality. During these times, use of a woodchip heavy-use area (HUA) presents advantages such as a soft, supportive, and dry foot surface for animals and protection of the pasture and pasture soils. However, woodchip HUAs can also be a centralized source of high nutrient loads due to their drainage outflows. A column study was conducted to assess the nutrient load reduction potential of: 1) six types of wood media (including torrefied wood media and biochar) that could be used in a woodchip HUA versus a gravel control, and 2) providing a 48 h retention time within the wood media to enhance nitrogen removal through denitrification. The woody media provided significant liquid waste volume reduction compared to the gravel in simulated events (53%–61% vs. 39% reductions, respectively), and there may be additional liquid storage capacity in the woodchips not utilized during these rapid events. Substantial total nitrogen removal by the wood treatments (mean removal efficiencies>50%) was observed across the simulated events, although nitrate leaching also occurred. Nitrate removal was enhanced during the 48 h retention test which showed removal was governed by availability of labile carbon (i.e., fresh woodchips exhibited>70% nitrate removal). The retention test also indicated biochar mixtures provided some of the best total phosphorus removal, but the greatest benefits across all parameters was provided by the Mixed Hardwood treatment.

Keywords Overwinter      Heavy-use area      Nutrient pollution      Torrefied      Woodchip     
This article is part of themed collection: Livestock Waste Management and Resource Recovery
Corresponding Authors: Laura Christianson   
Issue Date: 27 March 2017
 Cite this article:   
Laura Christianson,David DeVallance,Joshua Faulkner, et al. Scientifically advanced woody media for improved water quality from livestock woodchip heavy-use areas[J]. Front. Environ. Sci. Eng., 2017, 11(3): 2.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-017-0909-7
http://journal.hep.com.cn/fese/EN/Y2017/V11/I3/2
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Laura Christianson
David DeVallance
Joshua Faulkner
Thomas Basden
referencewoodchip HUA locationtotal nitrogen
/(mg TN·L−1)
ammonium
/(mg NH4+-N·L−1)
nitrate
/(mg NO3-N·L−1)
total phosphorus
/(mg TP·L−1)
[]one site, West Virginia<0.065±256.2±3.0
[]four sites, Scotland: cattle-on480±179270±148113±92
[]four sites, Scotland: cattle-off145±9879.1±86.279.7±12.1
[]2004 Trial Ireland a)460270ND101
[]2005 Trial Ireland a)340215ND44
[]six sites, Ireland353±312217±20235.2±15.4
[]nine sites, Scotland443 to 10603 to 13
[]one site, UK: pre-animal b)448.0c)27.6
[]one site, UK: with animals b)9939.4c)36.4
[]one site, UK: pre-animal b)479.4c)23.9
[]one site, UK: with animals b)15062c)36.8
Tab.1  Review of drainage water quality leaving woodchip heavy-use areas (HUAs)
Fig.1  Illustration of seven columns used in simulated runoff events and 48 h retention test to evaluate advanced wood media for use in woodchip heavy-use areas. Treatment abbreviations: white oak, WO; hardwood, HW; torrefied, TR; biochar, BC
test typevolume
/mL
total Kjeldahl nitrogen
/(mg TKN·L1)
nitrate-N
/(mg NO3--N·L1)
total phosphorus
/(mg TP·L1)
event 135085–8812–6118–20
event 280081–10317–4316–19
event 3129086–9523–3417–20
48 h test10340–1314093–10529–5918–20
Tab.2  Range of initial water volumes and nutrient concentrations in liquid waste added to the columns in three simulated events and a 48 h retention time test
Fig.2  Volume reductions (a) and total Kjeldahl nitrogen (b), nitrate-nitrogen (c), and total phosphorus (d) concentration reductions for three simulated events for seven media treatments in a column study; sequentially lighter bars for each treatment indicated sequential simulated events of 1.1, 2.5, and 4.0 cm liquid applied
treatmentwater volumetotal nitrogentotal phosphorus
total L retainedremoval efficiency /% a)total mg TN retainedmass removal efficiency /% a,b)total mg TP retainedmass removal efficiency /% a,b)
gravel0.7439b)1054323.159
white oak (WO)1.3261a)1415726.966
mixed hardwood1.2157a)1215127.966
WO+ WO torr@225°1.2056a)1475526.164
WO+ WO torr@225° + biochar1.2457a)1275424.665
WO+ WO torr@275°1.0853a)1255421.960
WO+ WO torr@275° + biochar1.2459a)1426025.568
Tab.3  Total leachate volume, total nitrogen, and total phosphorus retained by seven treatments over three simulated events and corresponding mean removal efficiencies
Fig.3  Volume and total Kjeldahl nitrogen, nitrate-nitrogen, and total phosphorus concentration reductions following a 48 h retention time in seven columns
treatmentwater volumetotal nitrogentotal phosphorus
total L retainedremoval efficiency /%total mg TN retainedmass removal efficiency /%total mg TP retainedmass removal efficiency /%
gravel3.1430708519446
white oak (WO)5.304013086711147
mixed hardwood5.144112806514764
WO+ WO torr@225°4.323810116410349
WO+ WO torr@225° + biochar4.46418916312059
WO+ WO torr@275°4.08358385710850
WO+ WO torr@275° + biochar4.54407625513061
Tab.4  Total liquid, total nitrogen, and total phosphorus retained by seven treatments following a 48 h retention time test and corresponding mean removal efficiencies
1 Faulkner J W, Miller J L, Basden T J, DeVallance D B. Woodchip heavy-use area effluent quality, quantity, and hydrologic design considerations. Applied Engineering in Agriculture, 2015, 31(5): 783–790
2 Vinten A J, Donnelly S, Ball B C, Crawford C E, Ritchie R M, Parker J P. A field trial to evaluate the pollution potential to ground and surface waters from woodchip corrals for overwintering livestock outdoors. Soil Use and Management, 2006, 22(1): 82–94
doi: 10.1111/j.1475-2743.2005.00008.x
3 McDonald A T, McDonald A D, Kay D, Watkins J. Characteristics and significance of liquid effluent from woodchip corrals in Scotland. Journal of Environmental Management, 2008, 87(4): 582–590
doi: 10.1016/j.jenvman.2007.04.029 pmid: 18096300
4 Jackson D R, Chadwick D R, Crookes M, Sagoo E, Smith K A. Impact of hydrology and effluent quality on the management of woodchip pads for overwintering cattle. II. Effluent analysis and nutrient balance. Journal of Agricultural Science, 2013, 151(02): 279–286
doi: 10.1017/S0021859612000378
5 Augustenborg C A, Carton O T, Schulte R P, Suffet I H. Response of silage yield to land application of out-wintering pad effluent in Ireland. Agricultural Water Management, 2008, 95(4): 367–374
doi: 10.1016/j.agwat.2007.10.018
6 Bourgeouis J P, Doet J. Torrefied wood from temperate and tropical species. Advantages and prospects. In: Egnens A E H, editor. Bioenergy 84. London: Elsevier Applied Science, 1985, 153–159
7 Bourgois J, Guyonnet R. Characterization and analysis of torrefied wood. Wood Science and Technology, 1988, 22(2): 143–155
doi: 10.1007/BF00355850
8 Fonseca F F, Luengo C A, Beaton P, Suarez J A. Efficiency test for bench unit torrefaction and characterization of torrefied biomass. In: Overend R P, Chonet E, eds. BIOMASS: A Growth Opportunity in Green Energy and Value-Added Products, Proceedings of the 4th Biomass Conference of the Americas. Oakland, California, USA: Pergamon, 1999, 3
9 Lipinsky E, Arcate J, Reed T. Enhanced wood fuels via torrefaction. Fuel Chemistry Preprints, 2002, 47(1): 3
10 Nimlos M N, Brooking E, Looker M J, Evans R J. Biomass torrefaction studies with a molecular beam mass spectrometer. Paper-American Chemical Society, Division of Fuel Chemistry, 2003, 48 (2): 590–591
11 Bergman P C, Kiel J H. Torrefaction for Biomass Upgrading. The Netherlands: Energy Research Centre of the Netherlands (ECN), 2005, Publication No. ECN-RX-05–180, 6
12 Prins M J, Ptasinski K J, Janssen F J. Torrefaction of wood. Part 1. Weight loss kinetic. Journal of Analytical and Applied Pyrolysis, 2006, 77(1): 28–34
doi: 10.1016/j.jaap.2006.01.002
13 Bridgeman T G, Jones J M, Shield I, Williams P T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008, 87(6): 844–856
doi: 10.1016/j.fuel.2007.05.041
14 Mitchell D, Elder T. Torrefaction? What’s that? In: Proceedings of the 33rd Annual Meeting of the Council on Forest Engineering: Fueling the Future. Auburn, Alabama: Council on Forest Engineering, 2010, 7
15 Antal M J, Gronli M. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619–1640
doi: 10.1021/ie0207919
16 Bourgois J, Bartholin M C, Guyonnet R. Thermal treatment of wood: analysis of the obtained product. Wood Science and Technology, 1989, 23(4): 303–310
doi: 10.1007/BF00353246
17 Bergman P C. Combined Torrefaction and Pelletisation. The Netherlands: Energy Research Centre of the Netherlands (ECN), 2005, Publication No. ECN-C-05–073. 29
18 Li H, Liu X, Legros R, Bi X T, Lim C J, Sokhansanj S. Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 2012, 93 (0): 680–685
doi: 10.1016/j.apenergy.2012.01.002
19 Chen W, Hsu H, Lu K, Lee W, Lin T. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of biomass. Energy, 2011, 36(5): 3012–3021
doi: 10.1016/j.energy.2011.02.045
20 Stelte W, Holm J K, Sanadi A R, Barsberg S, Ahrenfeldt J, Henriksen U B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass and Bioenergy, 2011, 35(2): 910–918
doi: 10.1016/j.biombioe.2010.11.003
21 Schipper L A, Robertson W D, Gold A J, Jaynes D B, Cameron S C. Denitrifying bioreactors–An approach for reducing nitrate loads to receiving waters. Ecological Engineering, 2010, 36(11): 1532–1543
doi: 10.1016/j.ecoleng.2010.04.008
22 Christianson L, Helmers M, Bhandari A. A practice-oriented review of woodchip bioreactors for subsurface agricultural drainage. Applied Engineering in Agriculture, 2012, 28(6): 861–874
doi: 10.13031/2013.42479
23 Ruane E M, Murphy P N, Healy M G, French P, Rodgers M. On-farm treatment of dairy soiled water using aerobic woodchip filters. Water Research, 2011, 45(20): 6668–6676
doi: 10.1016/j.watres.2011.09.055 pmid: 22056464
24 US DOC. Technical Paper No. 40: Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years. 1961. Available online at:  (Accessed June 3, 2016)
25 Jaynes D B, Moorman T B, Parkin T B, Kaspar T C. Simulating woodchip bioreactor performance using a dual-porosity model. Journal of Environmental Quality, 2016, 45(3): 830–838
doi: 10.2134/jeq2015.07.0342 pmid: 27136148
26 Cameron S G, Schipper L A. Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds. Ecological Engineering, 2012, 41 (0): 1–7
doi: 10.1016/j.ecoleng.2011.11.004
27 Robertson W D. Nitrate removal rates in woodchip media of varying age. Ecological Engineering, 2010, 36(11): 1581–1587
doi: 10.1016/j.ecoleng.2010.01.008
28 Cameron S G, Schipper L A. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds. Ecological Engineering, 2010, 36(11): 1588–1595
doi: 10.1016/j.ecoleng.2010.03.010
29 Healy M G, Barrett M, Lanigan G, João Serrenho A, Ibrahim T, Thornton S, Rolfe S, Huang W, Fenton O. Optimizing nitrate removal and evaluating pollution swapping trade-offs from laboratory denitrification bioreactors. Ecological Engineering, 2015, 74 (0): 290–301
doi: 10.1016/j.ecoleng.2014.10.005
30 Healy M G, Ibrahim T G, Lanigan G J, João Serrenho A, Fenton O. Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecological Engineering, 2012, 40(0): 198–209
doi: 10.1016/j.ecoleng.2011.12.010
31 Sharrer K, Christianson L E, Lepine C, Summerfelt S T. Modeling and mitigation of denitrification “woodchip” bioreactor phosphorus releases during treatment of aquaculture wastewater. Ecological Engineering, 2016, 93 (0): 135–143
doi: 10.1016/j.ecoleng.2016.05.019
32 Hua G, Salo M W, Schmit C G, Hay C H. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. Water Research, 2016, 102 (0): 180–189 
doi: 10.1016/j.watres.2016.06.022 pmid: 27344249
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed