Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 548-558     https://doi.org/10.1007/s11783-016-0831-4
RESEARCH ARTICLE |
Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production
Jingjing ZHAN1,Qiao ZHANG1,2,Momei QIN1,Yu HONG1,*()
1. Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
2. State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Drinking Water Source Safety Control, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China
Download: PDF(823 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The objective of this study is to select and characterize the candidate for synchronous water purification and lipid production from eight freshwater microalgae strains (Chlorella sp. HQ, C. emersonii, C. pyrenoidosa, C. vulgaris, Scenedesmus dimorphus, S. quadricauda, S. obiquus, Scenedesmus sp. LX1). The strains Chlorella sp. HQ, C. pyrenoidesa, and S. obliquus showed superiority in biomass accumulation, while the top biomass producers did not correspond to the top lipid producers. S. quadricauda achieved higher lipid content (66.1%), and Chlorella sp. HQ and S. dimorphus ranked down in sequence, with lipid content above 30%. Considering nutrient removal ability (total nitrogen (TN): 52.97%; total phosphorus (TP): 84.81%), the newly isolated microalga Chlorella sp. HQ was the possible candidate for water purification coupled with lipid production. To further investigate the lipid producing and nutrient removal mechanism of candidate microalga, the ultra structural changes especially the lipid droplets under different water qualities (different TN and TP concentrations) were characterized. The results elucidate the nutrient-deficiency (TN: 3.0 mg·L-1; TP: 0.3 mg·L-1) condition was in favor of forming lipid bodies in Chlorella sp. HQ at the sub-cellular level, while the biomass production was inhibited due to the decrease in chloroplast number which could further suppress the nutrient removal effect. Finally, a two-phase cultivation process (a nutrient replete phase to produce biomass followed by a nutrient deplete phase to enhance lipid content) was conducted in a photo-bioreactor for Chlorella sp. HQ to serve for algae-based synchronous biodiesel production and wastewater purification.

Keywords freshwater microalgae      biomass production      lipid accumulation      nutrient removal     
Corresponding Authors: Yu HONG   
Online First Date: 22 February 2016    Issue Date: 05 April 2016
 Cite this article:   
Jingjing ZHAN,Qiao ZHANG,Momei QIN, et al. Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production[J]. Front. Environ. Sci. Eng., 2016, 10(3): 548-558.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-016-0831-4
http://journal.hep.com.cn/fese/EN/Y2016/V10/I3/548
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jingjing ZHAN
Qiao ZHANG
Momei QIN
Yu HONG
Fig.1  18S rDNA (a) and ITS (b) regions PCR amplification of Chlorella sp. HQ
Fig.2  (A) The structure of photo-bioreactor and (B) the photo-bioreactors built in this study (microalgae were incubated into a 2L-photo-bioreactor containing 1.5L autoclaved mBG11 medium with air aeration of 1 L·min-1; High: 40 cm ; Diameter: 8 cm)
Fig.3  Algal growth curves of eight algae species
microalgae species independent experiment logistic parameters
K/(106 cells·mL-1) r/d-1 statistics
value error/(SE) value error/(SE) Adj. R2
Chlorella sp. HQ 1 17.76 5.64 0.24 0.07 0.88
2 25.67 12.86 0.19 0.05 0.91
3 14.38 1.82 0.32 0.07 0.91
average 19.27 3.35 0.25 0.04 0.90
Scenedesmus dimorphus 1 2.23 93.43 0.07 0.24 0.12
2 3.33 72.53 0.11 0.18 0.31
3 2.83 0.18 0.80 0.18 0.95
average 2.80 0.32 0.33 0.24 0.46
Chlorella ellipsoidea 1 1.40 100.83 0.20 0.33 0.45
2 1.30 1.98 0.20 0.19 0.30
3 1.65 0.90 0.34 0.26 0.53
average 1.45 0.10 0.25 0.05 0.43
Scenedesmus quadricauda 1 1.26 3.67 0.31 0.22 0.73
2 1.24 4.76 0.23 0.21 0.64
3 1.36 2.62 0.23 0.12 0.82
average 1.28 0.04 0.26 0.03 0.73
Chlorella pyrenoidesa 1 12.85 2.66 0.27 0.07 0.88
2 11.23 5.88 0.21 0.09 0.84
3 10.81 1.83 0.26 0.06 0.91
average 11.63 0.62 0.24 0.02 0.87
Scenedesmus obliquus 1 11.13 1.82 0.28 0.07 0.90
2 12.80 2.77 0.23 0.05 0.92
3 10.49 1.04 0.56 0.15 0.85
average 11.47 0.69 0.36 0.10 0.89
Chlorella vulgaris 1 16.16 2.21 0.24 0.04 0.96
2 17.14 1.85 0.25 0.03 0.97
3 18.03 2.33 0.25 0.04 0.95
average 17.11 0.54 0.25 0.01 0.96
Scenedesmus sp. LX1 1 3.43 0.26 0.37 0.04 0.98
2 3.28 0.50 0.30 0.06 0.94
3 2.74 0.28 0.50 0.13 0.91
average 3.15 0.21 0.39 0.06 0.95
Tab.1  The logistic parameters of eight freshwater green microalgae strains
algae species biomassproduction/(mg·L-1) lipid content/% lipidproductivity /(mg·L-1·d-1) TN removal efficiency/% TP removal efficiency/%
Chlorella sp. HQ 157.78±6.85 31.84±3.19 1.51±0.15 52.97±0.29 84.81±0.53
Chlorella ellipsoidea 121.67±27.54 16.85±7.85 1.03±0.48 59.61±0.77 64.65±1.32
Chlorella pyrenoidesa 161.67±5.77 18.02±5.36 1.46±0.43 79.12±0.13 85.63±0.50
Chlorella vulgaris 101.67±10.41 28.65±14.08 1.46±0.72 61.92±0.55 69.28±1.07
Scenedesmus dimorphus 85±7.07 30.59±1.25 1.30±0.05 40.43±0.10 50.14±1.63
Scenedesmus quadricauda 51.67±10.41 66.05±8.55 1.71±0.22 46.53±0.36 85.32±0.56
Scenedesmus obliquus 160±27.84 17.03±0.88 1.36±0.07 69.58±0.60 88.42±0.40
Scenedesmus sp. LX1 150±13.23 12.75±4.36 0.96±0.33 66.15±1.94 77.93±0.77
Tab.2  Biomass production, lipid contents, lipid productivities and nutrient removal efficiencies of the eight strains in synthetic secondary effluent
Fig.4  (a) (A-F) TEM micrographs of Chlorella sp. HQ under different TN concentrations with initial TP of 1.5 mg·L-1at the early (15 d) and the late stationary phase (30 d)(A: 15 d, N/P= 2/1; B: 15 d, N/P= 8/1; C: 15 d, N/P= 20/1; D: 30 d, N/P= 2/1; E: 30 d, N/P= 8/1; F: 30 d, N/P= 20/1);(b) (A-F) TEM micrographs of Chlorella sp. HQ under different TP concentrations with initial TN of 15.0 mg·L-1at the early (15 d) and the late stationary phase (30 d) (A: 15 d, N/P= 8/1; B: 15 d, N/P= 20/1; C: 15 d, N/P= 50/1; D: 30 d, N/P= 8/1; E: 30 d, N/P= 20/1; F: 30 d, N/P= 50/1)(Ch-Chlorophyll, N-Nucleus, L-Lipid droplet)
parameters phase increase or decreasein N-P-depletion phase
N-P-repletion N-P-depletion
biomass productivity 33.22 mg?L-1·d-1 29.03 mg·L-1·d-1 -12.61%
lipid productivity 5.13 mg·L-1·d-1 8.00 mg·L-1·d-1 55.95%
lipid content per dry weight 15.20% 20.80% 36.84%
TP removal efficiencies 98.93% 100.00% 1.08%
TN removal efficiencies 93.13% 95.20% 2.22%
Tab.3  Lipid production and nutrient removal efficiencies of Chlorella sp. HQ under two-phase cultivation
1 Zhou W G, Li Y C, Min M, Hu B, Zhang H, Ma X C, Li L, Cheng Y, Chen P, Ruan R. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Applied Energy, 2012, 98: 433–440
https://doi.org/10.1016/j.apenergy.2012.04.005
2 Zhu L D, Wang Z M, Takala J, Hiltumen E, Qin L, Xu Z B. Scale-up potential of cultivating Chlorella zofingiensis in piggerywastewater for biodiesel production. Bioresource Technology, 2013, 137: 318–325
https://doi.org/10.1016/j.biortech.2013.03.144
3 Menger-Krug E, Niederste-Hollenberg J, Hillenbrand T, Hiessl H O, Niederste-Hollenberg J, Hillenbrand T, Hiessl H. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environmental Science & Technology, 2012, 46(21): 11505–11514
https://doi.org/10.1021/es301967y
4 Norainia M Y, Ong H C, Badrul M J, Chong W T. A review on potential enzymatic reaction for biofuel production from algae. Renewable & Sustainable Energy Reviews, 2014, 39: 24–34
https://doi.org/10.1016/j.rser.2014.07.089
5 Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294–306
https://doi.org/10.1016/j.biotechadv.2007.02.001
6 Tsukahara K, Sawayama S. Liquid fuel production using microalgae. Journal of the Japan Petroleum Institute, 2005, 48(5): 251–259
https://doi.org/10.1627/jpi.48.251
7 Schenk P M, Thomas-Hall S R, Stephens E, Marx U C, Mussgnug J H, Posten C, Kruse O, Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research, 2008, 1(1): 20–43
https://doi.org/10.1007/s12155-008-9008-8
8 Río E D, Armendáriz A, García-Gómez E, García-González M, Guerrero M G. Continuous culture methodology for the screening of microalgae for oil. Journal of Biotechnology, 2015, 195: 103–107
https://doi.org/10.1016/j.jbiotec.2014.12.024
9 Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford: Wiley-Blackwell, 2004
10 Li L, Cui J, Liu Q, Ding Y C, Liu J G. Screening and phylogenetic analysis of lipid-rich microalgae. Algal Research, 2015
11 Wu Y H, Hu H Y, Yu Y, Zhang T Y, Zhu S F, Zhuang L L, Zhang X, Lu Y. Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renewable & Sustainable Energy Reviews, 2014, 33: 675–688
https://doi.org/10.1016/j.rser.2014.02.026
12 Yang J, Li X, Hu H Y, Zhang X, Yu Y, Chen Y S. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Applied Energy, 2011, 88(10): 3295–3299
https://doi.org/10.1016/j.apenergy.2010.11.029
13 Abreu A P, Fernandes B, Vicente A A, Teixeira J, Dragone G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 2012, 118: 61–66
https://doi.org/10.1016/j.biortech.2012.05.055
14 Ren H Y, Liu B F, Kong F, Zhao L, Xie G J, Ren N Q. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresource Technology, 2014, 169: 763–767
https://doi.org/10.1016/j.biortech.2014.06.062
15 Zhang Q, Hong Y. Effects of stationary phase elongation and initial nitrogen and phosphorus concentrations on the growth and lipid-producing potential of Chlorella sp. HQ. Journal of Applied Phycology, 2014, 26(1): 141–149
https://doi.org/10.1007/s10811-013-0091-7
16 State Environmental Protection Administration. Monitoring Method of Water and Wastewater. Beijing: China Environmental Science Press, 2002
17 Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 2010, 14(1): 217–232
https://doi.org/10.1016/j.rser.2009.07.020
18 Wu H Q, Miao X L. Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresource Technology, 2014, 170: 421–427
https://doi.org/10.1016/j.biortech.2014.08.017
19 Zhu S N, Huang W, Xu J, Wang Z M, Xu J L, Yuan Z H. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology, 2014, 152: 292–298
https://doi.org/10.1016/j.biortech.2013.10.092
20 Zhang Q, Hong Y. Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions. Frontiers of Environmental Science & Engineering, 2014, 8(5): 703–709
https://doi.org/10.1007/s11783-014-0649-x
21 Su Y A, Mennerich A, Urban B. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Bioresource Technology, 2012, 124: 157–162
https://doi.org/10.1016/j.biortech.2012.08.037
22 Wang B, Li Y Q, Wu N, Lan C Q. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 2008, 79(5): 707–718
https://doi.org/10.1007/s00253-008-1518-y
23 Wijffels R H, Barbosa M J. An outlook on microalgal biofuels. Science, 2010, 329(5993): 796–799
https://doi.org/10.1126/science.1189003
24 Nascimento I A, Marques S S I, Cabanelas I T D, Pereira S A, Druzian J I, de Souza C O, Vich D V, de Carvalho G C, Nascimento M A. Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Research, 2013, 6(1): 1–13
https://doi.org/10.1007/s12155-012-9222-2
25 Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009, 21(5): 493–507
https://doi.org/10.1007/s10811-008-9392-7
26 Williams P J B, Laurens L M L, 0. Laurens LML. Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy & Environmental Science, 2010, 3(5): 554–590
https://doi.org/10.1039/b924978h
27 Zhao G L, Yu J Y, Jiang F F, Zhang X, Tan T W. The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresource Technology, 2012, 114: 466–471
https://doi.org/10.1016/j.biortech.2012.02.129
28 Heraud P, Wood B R, Tobin M J, Beardall J, McNaughton D. Mapping of nutrient-induced biochemical changes in living algalcells using synchrotron infrared microspectroscopy. FEMS Microbiology Letters, 2005, 249(2): 219–225
https://doi.org/10.1016/j.femsle.2005.06.021
29 Johnson D A. Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae. Solar Energy Research Institute 1986
30 Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 2008, 54(4): 621–639
https://doi.org/10.1111/j.1365-313X.2008.03492.x
31 Sun X, Cao Y, Xu H, Liu Y, Sun J R, Qiao D R, Cao Y. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 2014, 155: 204–212
https://doi.org/10.1016/j.biortech.2013.12.109
32 Ho S H, Ye X T, Hasunuma T, Chang J S, Kondo A. Perspectives on engineering strategies for improving biofuel production from microalgae—A critical review. Biotechnology Advances, 2014, 32(8): 1448–1459
https://doi.org/10.1016/j.biotechadv.2014.09.002
33 Hernandez J P, de-Bashan L E, Bashan Y. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology, 2006, 38(1–2): 190–198
https://doi.org/10.1016/j.enzmictec.2005.06.005
34 Sydney E B, da Silva T E, Tokarski A, Novak A C, de Carvalho J C, Woiciecohwski A L, Larroche C, Soccol C R. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy, 2011, 88(10): 3291–3294
https://doi.org/10.1016/j.apenergy.2010.11.024
35 Li Y C, Zhou W G, Hu B, Min M, Chen P, Ruan R R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresource Technology, 2011, 102(23): 10861–10867
https://doi.org/10.1016/j.biortech.2011.09.064
Related articles from Frontiers Journals
[1] Xinfeng Wang, Lu Lin, Haifeng Lu, Zhidan Liu, Na Duan, Taili Dong, Hua Xiao, Baoming Li, Pei Xu. Microalgae cultivation and culture medium recycling by a two-stage cultivation system[J]. Front. Environ. Sci. Eng., 2018, 12(6): 14-.
[2] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[3] Zheng LI,Rong QI,Wei AN,Takashi MINO,Tadashi SHOJI,Willy VERSTRAETE,Jian GU,Shengtao LI,Shiwei XU,Min YANG. Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference[J]. Front. Environ. Sci. Eng., 2015, 9(3): 534-544.
[4] Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN. N2O emission from a sequencing batch reactor for biological N and P removal from wastewater[J]. Front.Environ.Sci.Eng., 2014, 8(5): 776-783.
[5] Qiao ZHANG,Yu HONG. Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions[J]. Front.Environ.Sci.Eng., 2014, 8(5): 703-709.
[6] Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG. Practical consideration for design and optimization of the step feed process[J]. Front Envir Sci Eng, 2013, 7(1): 135-142.
[7] Changyong WU, Xiaoling LI, Zhiqiang CHEN, Yongzhen PENG, . Effect of short-term atrazine addition on the performance of an anaerobic/anoxic/oxic process[J]. Front.Environ.Sci.Eng., 2010, 4(2): 150-156.
[8] YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying. Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor[J]. Front.Environ.Sci.Eng., 2007, 1(1): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed