Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 467-476     https://doi.org/10.1007/s11783-015-0809-7
RESEARCH ARTICLE |
Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion
Jiawei JU1,2,Ruiping LIU1,*(),Zan HE1,2,Huijuan LIU1,Xiwang ZHANG3,Jiuhui QU1
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. University of Chinese Academy of Sciences, Beijing 100039, China
3. Department of Chemical Engineering, Monash University, Clayton VIC 3800, Australia
Download: PDF(569 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although Al-based coagulation and adsorption processes have been proved highly efficient for fluoride (F) removal, the two processes both generate large amount of Al(OH)3 solid waste containing F (Al(OH)3-F). This study aimed to investigate the feasibility of utilizing Al(OH)3-F generated in Al(OH)3 adsorption (Al(OH)3-Fads) and coagulation (Al(OH)3-Fcoag) for the adsorption of cadmium ion (Cd(II)). The adsorption capacity of Al(OH)3-Fads and Al(OH)3-Fcoag for Cd(II) was similar as that of pristine aluminum hydroxide (Al(OH)3), being of 24.39 and 19.90 mg·g-1, respectively. The adsorption of Cd(II) onto Al(OH)3-Fads and Al(OH)3-Fcoag was identified to be dominated by ion-exchange with sodium ion (Na+) or hydrogen ion (H+), surface microprecitation, and electrostatic attraction. The maximum concentration of the leached fluoride from Al(OH)3-Fads and Al(OH)3-Fcoag is below the Chinese Class-I Industrial Wastewater Discharge Standard for fluoride (<10 mg·L-1). This study demonstrates that the Al(OH)3 solid wastes generated in fluoride removal process could be potentially utilized as a adsorbent for Cd(II) removal.

Keywords Al(OH)3      fluoride      cadmium      adsorption      reclamation      sequential extraction     
Corresponding Authors: Ruiping LIU   
Online First Date: 28 July 2015    Issue Date: 05 April 2016
 Cite this article:   
Jiawei JU,Ruiping LIU,Zan HE, et al. Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion[J]. Front. Environ. Sci. Eng., 2016, 10(3): 467-476.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-015-0809-7
http://journal.hep.com.cn/fese/EN/Y2016/V10/I3/467
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiawei JU
Ruiping LIU
Zan HE
Huijuan LIU
Xiwang ZHANG
Jiuhui QU
kinetic models parameter Al(OH)3-Fads Al(OH)3-Fcoag Al(OH)3
Qe,exp /(mg·g-1) 16.19 15.65 19.46
pseudo-first-order kinetic model k1 /( × 10 min-1) 0.19 0.16 0.23
Qe,cal /(mg·g-1) 12.78 12.30 11.70
R2 0.89 0.89 0.78
pseudo-second-order kinetic model k2 /( × 102 min-1) 0.16 0.14 0.04
Qe,cal /(mg·g-1) 16.66 16.39 19.60
R2 0.99 0.99 0.99
Tab.1  Fitted kinetic parameters of pseudo-first-order and pseudo-second-order models for the adsorption of Cd(II) onto these three adsorbents
adsorbents Qe,expa)/(mg·g-1) adsorption isotherm models
Langmuir parameters Freundlich parameters D-R parameters
Qmax/(mg·g-1) L/(L·mg-1) R2 F n R2 Qmax/(mg·g-1) E/(kJ·mol-1) R2
Al(OH)3-Fads 17.12 24.39 0.04 0.99 1.18 1.53 0.90 25.75 8.45 0.98
Al(OH)3-Fcoag 16.86 19.90 0.08 0.99 4.94 3.18 0.94 40.74 5.59 0.99
Al(OH)3 20.05 30.30 0.03 0.99 2.83 2.02 0.84 38.99 6.74 0.99
Tab.2  Fitted parameters of Langmuir, Freundlich, and D-R models for the adsorption of Cd(II) onto these three adsorbents
Fig.1  Uptake of Cd(II) onto these three adsorbents at various equilibrium pH
Fig.2  Uptake of Cd(II) onto these three adsorbents at various ionic strength
Fig.3  Solution pH variation during the adsorption of Cd(II) by these three adsorbents with prolonged time
Fig.4  XPS spectra of Cd 3d and Cl 2p on the surfaces of these three adsorbents
Binding energy /eV
Al(OH)3-Fads Al(OH)3-Fcoag Al(OH)3 Al(OH)3-Fads-Cd(II) Al(OH)3-Fcoag-Cd(II) Al(OH)3-Cd(II)
Na 1s 1071.5 (13.6%)a) 1071.5 (12.1%) 1071.7 (6.5%) 1071.4 (1.0%) 1071.5 (4.2%) 1071.4 (1.2%)
O 1s 531.8 (31.6%)a) 531.9 (34.8%) 531.6 (50.6%) 532.0 (47.1%) 531.9 (48.1%) 531.6 (60.4%)
Al 2p 74.4 (14.6%) 74.3 (21.7%) 74.0 (18.0%) 74.5 (29.6%) 74.4 (27.1%) 74.1 (20.2%)
F 1s 684.8 (14.9%) 684.9 (9.9%) / 685.1 (19.4%) 684.8 (13.9%) /
Cl 2p 198.6 (6.6%)200.2 (3.3%) 198.6 (6.1%)200.2 (4.3%) 198.6 (4.4%)200.1 (2.3%) 198.1 (5.1%)199.5 (4.6%) 198 (2.1%)199.5 (1.5%) 197.8 (1.8%)199.2 (1.1%)
Cd 3d / / / 405.2 (0.2%)411.9 (0.1%) 405.5 (0.2%)412.2 (0.2%) 405.3 (0.3%)412.1 (0.2%)
Tab.3  XPS binding energy of the main elements on the surfaces of these three adsorbents before and after adsorbing Cd(II)
Fig.5  Content and ratios of Cd(II) in different binding species within these three adsorbent (species-I: water-soluble Cd(II); species-II: N H 4 + -exchangeable Cd(II); species-III: Na+-exchangeable Cd(II))
1 Hu C Y, Lo S L, Kuan W H, Lee Y D. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation. Water Research, 2005, 39(5): 895–901
https://doi.org/10.1016/j.watres.2004.11.034 pmid: 15743636
2 Zhang G, Gao Y, Zhang Y, Gu P. Removal of fluoride from drinking water by a membrane coagulation reactor (MCR). Desalination, 2005, 177(1-3): 143–155
https://doi.org/10.1016/j.desal.2004.12.005
3 Cooper C, Jiang J Q, Ouki S. Preliminary evaluation of polymeric Fe- and Al- modified clays as adsorbents for heavy metal removal in water treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2002, 77(5): 546–551
https://doi.org/10.1002/jctb.614
4 Mahmoud M E, Osman M M, Hafez O F, Hegazi A H, Elmelegy E. Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbed-dithizone. Desalination, 2010, 251(1-3): 123–130
https://doi.org/10.1016/j.desal.2009.08.008
5 Naiya T K, Bhattacharya A K, Das S K. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science, 2009, 333(1): 14–26
https://doi.org/10.1016/j.jcis.2009.01.003 pmid: 19211112
6 Granados-Correa F, Corral-Capulin N G, Olguín M T, Acosta-León C E. Comparison of the Cd (II) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH). Chemical Engineering Journal, 2011, 171(3): 1027–1034
https://doi.org/10.1016/j.cej.2011.04.055
7 Orescanin V, Kollar R, Halkijevic I, Kuspilic M, Flegar V. Neutralization/purification of the wastewaters from printed circuit boards production using waste by-products. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering & Toxic and Hazardous Substance Control, 2014, 49(5): 540–544
https://doi.org/10.1080/10934529.2014.859034 pmid: 24410684
8 Sun W, Yin K, Yu X. Effect of natural aquatic colloids on Cu(II) and Pb(II) adsorption by Al2O3 nanoparticles. Chemical Engineering Journal, 2013, 225(1): 464–473
https://doi.org/10.1016/j.cej.2013.04.010
9 Smičiklas I, Smiljanić S, Perić-Grujić A, Šljivić-Ivanović M, Antonović D. The influence of citrate anion on Ni (II) removal by raw red mud from aluminum industry. Chemical Engineering Journal, 2013, 214(1): 327–335
https://doi.org/10.1016/j.cej.2012.10.086
10 Lagergren S. Zur heorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24(4): 1–39
11 Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465
https://doi.org/10.1016/S0032-9592(98)00112-5
12 McKay G, Blair H, Gardner J. Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 1982, 27(8): 3043–3057
https://doi.org/10.1002/app.1982.070270827
13 Liu H, Cai X, Wang Y, Chen J. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Research, 2011, 45(11): 3499–3511
https://doi.org/10.1016/j.watres.2011.04.004 pmid: 21529879
14 Liang J, Xu R, Jiang X, Wang Y, Zhao A, Tan W. Effect of arsenate on adsorption of Cd(II) by two variable charge soils. Chemosphere, 2007, 67(10): 1949–1955
https://doi.org/10.1016/j.chemosphere.2006.11.057 pmid: 17234246
15 Mansour M, Ossman M, Farag H. Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination, 2011, 272(1-3): 301–305
https://doi.org/10.1016/j.desal.2011.01.037
16 Kinniburgh D, Syers J, Jackson M. Specific adsorption of trace amounts of calcium and strontium by hydrous oxides of iron and aluminum. Soil Science Society of America Journal, 1975, 39(3): 464–470
https://doi.org/10.2136/sssaj1975.03615995003900030027x
17 Breen C, Bejarano-Bravo C M, Madrid L, Thompson G, Mann B E. Na/Pb, Na/Cd and Pb/Cd exchange on a low iron Texas bentonite in the presence of competing H+ ion. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1999, 155(2-3): 211–219
https://doi.org/10.1016/S0927-7757(99)00030-8
18 Liu Y, Zhao Q, Cheng G, Xu H. Exploring the mechanism of lead(II) adsorption from aqueous solution on ammonium citrate modified spent Lentinus edodes. Chemical Engineering Journal, 2011, 173(3): 792–800
https://doi.org/10.1016/j.cej.2011.08.054
19 Trivedi P, Axe L. Modeling Cd and Zn Sorption to Hydrous Metal Oxides. Environmental Science & Technology, 2000, 34(11): 2215–2223
https://doi.org/10.1021/es991110c
20 Wagner C D, Riggs W M, Davis L E, Moulder J F. Handbook of X-ray Photoelec-tron Spectroscopy. Eden Prairie, Minnesota: Physical Electronics Division, Perkin-Elmer Corporation, 1979
21 Hirsch D, Nir S, Banin A. Prediction of cadmium complexation in solution and adsorption to montmorillonite. Soil Science Society of America Journal, 1989, 53(3): 716–721
https://doi.org/10.2136/sssaj1989.03615995005300030012x
22 Cheng C, Wang J, Yang X, Li A, Philippe C. Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials, 2014, 264(1): 332–341
https://doi.org/10.1016/j.jhazmat.2013.11.028 pmid: 24316805
Related articles from Frontiers Journals
[1] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[2] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[3] Shuai Wang, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times[J]. Front. Environ. Sci. Eng., 2018, 12(2): 3-.
[4] Ling Li, Yu He, Xia Lu. New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study[J]. Front. Environ. Sci. Eng., 2018, 12(2): 11-.
[5] Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments[J]. Front. Environ. Sci. Eng., 2018, 12(2): 7-.
[6] Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5-.
[7] Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20-.
[8] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[9] Liuyan WU,Lijuan JIA,Xiaohan LIU,Chao LONG. The prediction of adsorption isotherms of ester vapors on hypercrosslinked polymeric adsorbent[J]. Front. Environ. Sci. Eng., 2016, 10(3): 482-490.
[10] Yiwen LIN,Dan LI,Siyu ZENG,Miao HE. Changes of microbial composition during wastewater reclamation and distribution systems revealed by high-throughput sequencing analyses[J]. Front. Environ. Sci. Eng., 2016, 10(3): 539-547.
[11] Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
[12] Md. Lutfor RAHMAN,Shaheen M. SARKAR,Mashitah Mohd YUSOFF. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 352-361.
[13] Jianguo LIU,Wen ZHANG,Peng QU,Mingxin WANG. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 262-269.
[14] Lijing DONG,Zhiliang ZHU,Yanling QIU,Jianfu ZHAO. Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite[J]. Front. Environ. Sci. Eng., 2016, 10(1): 28-36.
[15] Juan QIU,Ping NING,Xueqian WANG,Kai LI,Wei LIU,Wei CHEN,Langlang WANG. Removing carbonyl sulfide with metal-modified activated carbon[J]. Front. Environ. Sci. Eng., 2016, 10(1): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed