Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (4) : 565-574     https://doi.org/10.1007/s11783-015-0801-2
REVIEW ARTICLE |
Adsorption behavior of antibiotic in soil environment: a critical review
Shiliang WANG,Hui WANG()
State Key Joint Laboratory on Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
Download: PDF(155 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Antibiotics are used widely in human and veterinary medicine, and are ubiquitous in environment matrices worldwide. Due to their consumption, excretion, and persistence, antibiotics are disseminated mostly via direct and indirect emissions such as excrements, sewage irrigation, and sludge compost and enter the soil and impact negatively the natural ecosystem of soil. Most antibiotics are amphiphilic or amphoteric and ionize. A non-polar core combined with polar functional moieties makes up numerous antibiotic molecules. Because of various molecule structures, physicochemical properties vary widely among antibiotic compounds. Sorption is an important process for the environment behaviors and fate of antibiotics in soil environment. The adsorption process has decisive role for the environmental behaviors and the ultimate fates of antibiotics in soil. Multiply physicochemical properties of antibiotics induce the large variations of their adsorption behaviors. In addition, factors of soil environment such as the pH, ionic strength, metal ions, and organic matter content also strongly impact the adsorption processes of antibiotics. Review about adsorption of antibiotics on soil can provide a fresh insight into understanding the antibiotic-soil interactions. Therefore, literatures about the adsorption mechanisms of antibiotics in soil environment and the effects of environment factors on adsorption behaviors of antibiotics in soil are reviewed and discussed systematically in this review.

Keywords adsorption      antibiotics      environment factors      soil     
Corresponding Authors: Hui WANG   
Issue Date: 25 June 2015
 Cite this article:   
Shiliang WANG,Hui WANG. Adsorption behavior of antibiotic in soil environment: a critical review[J]. Front. Environ. Sci. Eng., 2015, 9(4): 565-574.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-015-0801-2
http://journal.hep.com.cn/fese/EN/Y2015/V9/I4/565
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shiliang WANG
Hui WANG
selected classes representative compounds core structure basic properties
aminoglycosides apramycin comprised of two or more amino sugars joined by a glycoside linkage to a hexose nucleus of the drug. The structure of these antibiotics is derived from these two molecules. MM: 332.4-615.6 (g·mol-1)
gentamycin WS: 10-500 (g·L-1)
kanamycin log KOW:-8.1 - -0.8
neomycin pKa: 6.9-8.5
sisomycin HC: 8.5 × 10-12-4.1 × 10-12
spectinomycin
streptomycin
β-lactams amoxicillin comprised of a thiazolidine ring connected to a β-lactam ring, to which a side chain is attached. MM: 334.4-470.3 (g·mol-1)
ampicillin WS: 22-10100 (mg·L-1)
azlocillin log KOW: 0.9-2.9
benzylpenicillin pKa: 2.7
carbenicillin HC: 2.5 × 10-19-1.2 × 10-12
cefazolin
cefuroxim
cefotaxim
cefprozil
cloxacilin
dicloxacilin
flucloxacillin
meropenem
methicillin
mezlocillin
nafcillin
oxacillin
piperacillin
phenoxymethylcillin
penicillin G
glycopeptides vancomycin comprised of carbohydrate moieties (glycans) covalently attached to the side chains of an amino acid. MM: 1450.7 (g·mol-1)WS:>100 (mg·L-1)not soluble in octanolpKa: 5.0HC: negligible
macrolides azithromycin comprised of highly substituted monocyclic lactone with one or more saccharides glycosidically attached to hydroxyl groups. The lactone rings are usually 12, 14 or 16-membered. MM: 687.9-916.1 (g·mol-1)
clarithromycin WS: 0.45-15 (mg·L-1)
erythromycin log KOW: 1.6-3.1
roxithromycin pKa: 7.7-8.9
spiramycin HC: 7.8 × 10-36-2.0 × 10-26
tylosin
vancomycin
fluorquinolones ciprofloxacinenrofloxacin,flumequin,sarafloxacin containing two fused rings with a carboxylic acid and a ketone group. MM: 229.5-417.6 (g·mol-1)WS: 3.2-17790 (mg·L-1)log Kow: -1.0-1.6pKa: 8.6HC: 5.2 × 10-17-3.2 × 10-8
sulphonamides sulphanilamide characterized by sulfonyl group connected to an amine group. MM: 172.2-300.3 (g·mol-1)
sulphadimethoxine WS: 7.5-1500 (mg·L-1)
sulphadimidine log KOW: -0.1-1.7
sulphamethoxazole pKa: 2~3; 4.5-10.6
sulphapyridine HC: 1.3 × 10-12-1.8 × 10-8
sulphathiazole
tetracyclines chlortetracycline containing an octrahydronaphtacene ring skeleton, consisting of 4 fused rings. MM: 444.5-527.6 (g·mol-1)
doxycycline WS: 203-52000 (mg·L-1)
oxytetracycline log KOW: -1.3-0.05
tetracycline pKa: 3.3; 7.7; 9.3
doxycycline HC: 1.7 × 10-23-4.8 × 10-23
erythro-mycin A
Tab.1  Basically physicochemical properties of selected classes of antibiotics
selected classes representative compounds sorbents conditions Kd /(L·kg-1)
fluoroquinolones enrofloxacin three kinds of sandy loam soils; pH: 4.9,5.3,7.5; 24 h; (20±1)℃ 260-5610 [48]
ciprofloxacin one kind of sandy loam soil; pH: 5.3; 24 h; (20±1)℃ 430 [48]
sulfonamides sulfamethazine two kinds of soil; pH: 7.5,7.2 14 h; 0.01 mol·L-1 CaCl2 4.2-6.8 [49]
tetracyclines oxytetracycline three kinds of sandy loam soils; pH: 6.1,5.6,6.3; 24 h; 0.01 mol·L-1 CaCl2 420-1030 [50]
one kind of wood soil; pH: 5.3one kind of plain soil: pH: 6.0 72 h; 10 mmol·L-1 PIPES buffer solution, 1.5 mmol·L-1 NaN3 351.9-3910152.6-1308 [51]
tetracycline one kind of organic matter-rich soil; pH: 4.6, 6.1 24 h; 0.01 mol·L-1 CaCl2 1140-1620 [52]
macrolides tylosin three kinds of sandy loam soils; pH: 6.1,5.6,6.3 24 h; 0.01 mol·L-1 CaCl2 8.3-128 [50]
abamectin 24 h; 0.01 mol·L-1 CaCl2 7-134 [53]
Tab.2  Literature data of sorption coefficients of antibiotics in soil
1 Wei Y M, Zhang Y, Xu J, Guo C S, Li L, Fan W H. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography–tandem mass spectrometry. Frontiers of Environmental Science & Engineering, 2014, 8(3): 357-371
https://doi.org/10.1007/s11783-013-0580-6
2 Li X W, Shi H C, Li K X, Zhang L, Gan Y P. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(6): 888-894
https://doi.org/10.1007/s11783-014-0735-0
3 Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle change. Environmental Health Perspectives, 1999, 107(6 Suppl 6): 907-938
https://doi.org/10.1289/ehp.99107s6907
4 Golet E M, Xifra I, Siegrist H, Alder A C, Giger W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 2003, 37(15): 3243-3249
https://doi.org/10.1021/es0264448
5 Halling-S?rensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützh?ft H C, J?rgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere, 1998, 36(2): 357-393
https://doi.org/10.1016/S0045-6535(97)00354-8
6 Díaz-Cruz M S, López de Alda M J, Barceló D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 2003, 22(6): 340-351
https://doi.org/10.1016/S0165-9936(03)00603-4
7 Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research, 2007, 41(18): 4164-4176
https://doi.org/10.1016/j.watres.2007.04.005
8 Boxall A B A, Kolpin D W, Halling-Sorensen B, Tolls J. Are veterinary medicines causing environmental risks? Environmental Science & Technology, 2003, 37(15): 286A-294A
https://doi.org/10.1021/es032519b
9 G?bel A, Thomsen A, McArdell C S, Joss A, Giger W. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 2005, 39(11): 3981-3989
https://doi.org/10.1021/es048550a
10 Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils—A review. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167
https://doi.org/10.1002/jpln.200390023
11 Alder A C, McArdell C S, Golet E M, Ibric S, Molnar E, Nipales N S, Giger W. Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland. In: Daughton C G, Jones-Lepp T, Eds. Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. Washington D C.: American Chemical Society, 2001, 56-69
12 Boxall A B A, Blackwell P, Cavallo R, Kay P, Tolls J. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters, 2002, 131(1-2): 19-28
https://doi.org/10.1016/S0378-4274(02)00063-2
13 Hernando M D, Mezcua M, Fernández-Alba A R, Barceló D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 2006, 69(2): 334-342
https://doi.org/10.1016/j.talanta.2005.09.037
14 Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 2008, 8(1): 1-13
https://doi.org/10.1016/j.ecolind.2007.06.002
15 Bailón-Pérez M I, Garcia-Campa?a A M, Cruces-Blanco C, del Olmo Iruela M. Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. Journal of Chromatography. A, 2008, 1185(2): 273-280
https://doi.org/10.1016/j.chroma.2007.12.088
16 Chen Z H, Deng S B, Wei H R, Wang B, Huang J, Yu G. Activated carbons and amine-modified materials for carbon dioxide capture — A review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326-340
https://doi.org/10.1007/s11783-013-0510-7
17 Li L, Xu J, Guo C S, Zhang Y. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture. Frontiers of Environmental Science & Engineering, 2013, 7(3): 382-387
https://doi.org/10.1007/s11783-013-0504-5
18 Peng Y, Li J H. Ammonia adsorption on graphene and graphene oxide: a first-principles study. Frontiers of Environmental Science & Engineering, 2013, 7(3): 403-411
https://doi.org/10.1007/s11783-013-0491-6
19 Zhou Q, Wang M Q, Li A M, Shuang C D, Zhang M C, Liu X H, Wu L Y. Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid. Frontiers of Environmental Science & Engineering, 2013, 7(3): 412-419
https://doi.org/10.1007/s11783-013-0483-6
20 Kümmerer K. Antibiotics in the aquatic environment: a review—Part I. Chemosphere, 2009, 75(4): 417-434
https://doi.org/10.1016/j.chemosphere.2008.11.086
21 Petrovi? M, Hernando M D, Díaz-Cruz M S, Barceló D. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. Journal of Chromatography. A, 2005, 1067(1-2): 1-14
https://doi.org/10.1016/j.chroma.2004.10.110
22 Ikehata K, Naghashkar N J, El-Din M G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Science and Engineering, 2006, 28(6): 353-414
https://doi.org/10.1080/01919510600985937
23 Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 2009, 35(2): 402-417
https://doi.org/10.1016/j.envint.2008.07.009
24 Erkel G. Biochemie der Antibiotika: Struktur-Biosynthese-Wirk Mechanismus. Heidelberg: Spektrum Akademischer Verlag, 1992, 389
25 Halling-S?rensen B, Sengel?v G, Tj?rnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271
https://doi.org/10.1007/s00244-001-0017-2
26 Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography. A, 2000, 882(1-2): 109-133
https://doi.org/10.1016/S0021-9673(99)01316-3
27 Mitscher L A. The Chemistry of the Tetracycline Antibiotics. Basel: Marcel Dekker, 1978, 330
28 Ingerslev F, Halling-S?rensen B. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467-2473
https://doi.org/10.1002/etc.5620191011
29 Wetzstein H G. Biologische abbaubarkeit der gyrasehemmer. Pharmazie in Unserer Zeit, 2001, 30(5): 450-457
https://doi.org/10.1002/1615-1003(200109)30:5<450::AID-PAUZ450>3.0.CO;2-F
30 Xu Z, Zhang Q, Fang H H P. Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Critical Reviews in Environmental Science and Technology, 2003, 33(4): 363-389
https://doi.org/10.1080/10643380390249512
31 Xu W H, Zhang G, Zou S C, Li X D, Liu Y C. Determination of selected antibiotics in the Victoria Harbor and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 2007, 145(3): 672-679
https://doi.org/10.1016/j.envpol.2006.05.038
32 Sun Y, Huang H, Sun Y, Wang C, Shi X L, Hu H Y, Kameya T, Fujie K. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent. Frontiers of Environmental Science & Engineering, 2014, 8(1): 18-26
https://doi.org/10.1007/s11783-013-0573-5
33 Sui Q, Huang J, Lu S G, Deng S B, Wang B, Zhao W T, Qiu Z F, Yu G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science & Engineering, 2014, 8(1): 62-68
https://doi.org/10.1007/s11783-013-0518-z
34 Rao K F, Li N, Ma M, Wang Z J. In vitro agonistic and antagonistic endocrine disrupting effects of organic extracts from waste water of different treatment processes. Frontiers of Environmental Science & Engineering, 2014, 8(1): 69-78
https://doi.org/10.1007/s11783-013-0502-7
35 Liu C L, Xu Y P, Ma M, Huang B B, Wu J D, Meng Q Y, Wang Z J, Gearheart R A. Evaluation of endocrine disruption and dioxin-like effects of organic extracts from sewage sludge in autumn in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(3): 433-440
https://doi.org/10.1007/s11783-013-0594-0
36 H?per H, Kues J, Nau H, Hamscher G. Eintrag und verbleib von tierarzneimittelwirkstoffen in B?den. Bodenschutz, 2002, 4(2): 141-148
37 Hamscher G, Sczesny S, H?per H, Nau H. Tierarzneimittel als persistente organische Kontaminanten von B?den. 10 Jahre Boden-Dauerbeobachtung in Niedersachsen, 2001, 10
38 Sengel?v G, Agerso Y, Halling-s?rensen B, Baloda S B, Andersen J S, Jensen L B. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environment International, 2003, 28(7): 587-595
https://doi.org/10.1016/S0160-4120(02)00084-3
39 Winckler C, Grafe A. Stoffeintrag Durch Tierarzneimittel und Pharmakologisch Wirksame Fuutterzusatzstoffe unter Besonderer Berücksichtigung von Tetrazyklinen. Berlin: UBA-Texte 44/00, 2000, 145
40 Schüller S. Anwendung antibiotisch wirksamer Substanzen beim Tier und Beurteilung der Umweltsicherheit entsprechender Produkte. 3. Statuskolloquium ?kotoxikologischer Forschungen in der Euregio Bodensee, 1998
41 Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 2010, 158(9): 2992-2998
https://doi.org/10.1016/j.envpol.2010.05.023
42 Hamscher G, Abuquare S, Sczesny S, H?per H, Nau H. Determination of Tetracyclines in Soil and Water Samples from Agricultural Areas in Lower Saxony. Veldhoven, NL: Presented at Euro Residue IV, 2000
43 Kolpin D W, Meyer M T, Barber L B, Zaugg S D, Furlong E T, Buxton H T. A national reconnaissance for antibiotics and hormones in streams of the United States. Presented at SETAC 21st Annual Meeting in North America, Nashville, TN, November 12-16, 2000
44 Tolls J. Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science & Technology, 2001, 35(17): 3397-3406
https://doi.org/10.1021/es0003021
45 Sassman S A, Lee L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology, 2005, 39(19): 7452-7459
https://doi.org/10.1021/es0480217
46 Jones A D, Bruland G L, Agrawal S G, Vasudevan D. Factors influencing the sorption of oxytetracycline to soils. Environmental Toxicology and Chemistry, 2005, 24(4): 761-770
https://doi.org/10.1897/04-037R.1
47 Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, andclay-humic complexes. Environmental Science & Technology, 2007, 41(6): 1928-1933
https://doi.org/10.1021/es062316y
48 Nowara A, Burhenne J, Spiteller M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1459-1463
https://doi.org/10.1021/jf960215l
49 Accinelli C, Koskonen W C, Becker J M, Sadowsky M J. Environmental fate of two sulfonamide antimicrobial agents in soils. Journal of Agricultural and Food Chemistry, 2007, 55(7): 2677-2682
https://doi.org/10.1021/jf063709j
50 Rab?lle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline, and tylosin in soil. Chemosphere, 2000, 40(7): 715-722
https://doi.org/10.1016/S0045-6535(99)00442-7
51 Figueroa R A, Mackay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environmental Science & Technology, 2005, 39(17): 6664-6671
https://doi.org/10.1021/es048044l
52 Sithole B B, Guy R D. Models for oxytetracycline in aquatic environments. 1. Interaction with bentonite clay systems. Water, Air, and Soil Pollution, 1987, 32(3-4): 303-314
https://doi.org/10.1007/BF00225116
53 Gruber V F, Halley B A, Hwang S G, Ku C C. Mobility of avermectin B1a in soil. Journal of Agricultural and Food Chemistry, 1990, 38(3): 886-890
https://doi.org/10.1021/jf00093a063
54 Kay P, Blackwell P A, Boxall A B. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 2004, 23(5): 1136-1144
https://doi.org/10.1897/03-374
55 Zhang H, Huang C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 2007, 66(8): 1502-1512
https://doi.org/10.1016/j.chemosphere.2006.08.024
56 Gu C, Karthikeyan K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(23): 9166-9173
https://doi.org/10.1021/es051109f
57 Figueroa R A, Leonard A, Mackay A A. Modeling tetracycline antibiotic sorption to clays. Environmental Science & Technology, 2004, 38(2): 476-483
https://doi.org/10.1021/es0342087
58 MacKay A A, Canterbury B. Oxytetracycline sorption to organic matter by metal-bridging. Journal of Environmental Quality, 2005, 34(6): 1964-1971
https://doi.org/10.2134/jeq2005.0014
59 Wessels J M, Ford W E, Szymczak W, Schneider S. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: A spectroscopic study. Journal of Physical Chemistry B, 1998, 102(46): 9323-9331
https://doi.org/10.1021/jp9824050
60 Gu C, Karthikeyan K G, Sibley S D, Pedersen J A. Complexation of the antibiotic tetracycline with humic acid. Chemosphere, 2007, 66(8): 1494-1501
https://doi.org/10.1016/j.chemosphere.2006.08.028
61 Sibley S D, Pedersen J A. Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid. Environmental Science & Technology, 2008, 42(2): 422-428
https://doi.org/10.1021/es071467d
62 Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 2005, 39(24): 9509-9516
https://doi.org/10.1021/es050644c
63 Kahle M, Stamm C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environmental Science & Technology, 2007, 41(1): 132-138
https://doi.org/10.1021/es061198b
64 Bialk H M, Pedersen J A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environmental Science & Technology, 2008, 42(1): 106-112
https://doi.org/10.1021/es070779d
65 Yeager R L, Halley B A. Sorption/desorption of [14C]efrotomycin with soils. Journal of Agricultural and Food Chemistry, 1990, 38(3): 883-886
https://doi.org/10.1021/jf00093a062
66 Lützh?ft H C H, Vaes W H J, Freidig A P, Halling-S?rensen B, Hermens J L M. 1-Octanol/water distribution coefficient of oxolinic acid: influence of pH and its relation to the interaction with dissolved organic carbon. Chemosphere, 2000, 40(7): 711-714
https://doi.org/10.1016/S0045-6535(99)00441-5
67 Porubcan L S, Serna C J, White J L, Hem S L. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite. Journal of Pharmaceutical Sciences, 1978, 67(8): 1081-1087
https://doi.org/10.1002/jps.2600670815
68 Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(8): 2660-2667
https://doi.org/10.1021/es048603o
69 Tolls J, Gebbink W, Cavallo R. pH-dependence of sulfonamide antibiotic sorption: data and model evaluation. SETAC Europe 12th Annual Meeting, Vienna, Austria. Madison: Amer Soc Agronomy, 2002, 12-16
70 Sithole B B, Guy R D. Models for oxytetracycline in aquatic environments. 2. Interactions with humic substances. Water, Air, and Soil Pollution, 1987, 32(3-4): 315-321
https://doi.org/10.1007/BF00225117
71 Loke M L, Tj?rnelund J, Halling-S?rensen B. Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 2002, 48(3): 351-361
https://doi.org/10.1016/S0045-6535(02)00078-4
72 Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 2009, 76(4): 558-564
https://doi.org/10.1016/j.chemosphere.2009.02.066
73 Zhang J Q, Dong Y H. Influence of strength and special of cation on adsorption of norfloxacin in typical soils of China. Environmental Sciences, 2007, 28(10): 2383-2388 (in Chinese)
74 Picó Y, Andreu V. Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1287-1299
https://doi.org/10.1007/s00216-006-0843-1
75 Wang Y J, Jia D A, Sun R J, Zhu H W, Zhou D M. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environmental Science & Technology, 2008, 42(9): 3254-3259
https://doi.org/10.1021/es702641a
76 Marengo J R, Kok R A, O’Brien K, Velagaleti R R, Stamm J M. Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environmental Toxicology and Chemistry, 1997, 16(3): 462-471
https://doi.org/10.1002/etc.5620160311
77 Kulshrestha P, Giese R F Jr, Aga D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science & Technology, 2004, 38(15): 4097-4105
https://doi.org/10.1021/es034856q
78 Holten L?tzh?ft H C, Vaes Wouter H J, Freidig Andreas P, Halling-S?rensen B, Hermens Joop L M. Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by “negligible depletion” SPME-HPLC. Environmental Science & Technology, 2000, 34(23): 4989-4994
https://doi.org/10.1021/es000917y
79 Carrasquillo A J, Bruland G L, MacKay A A, Vasudevan D. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environmental Science & Technology, 2008, 42(20): 7634-7642
https://doi.org/10.1021/es801277y
80 Zhang M K, Wang L P, Zheng S A. Adsorption and transport characteristics of two exterior-source antibiotics in some agricultural soils. Acta Ecologica Sinica, 2008, 28(2): 761-766 (in Chinese)
81 Ter Laak T L, Gebbink W A, Tolls J. Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environmental Toxicology and Chemistry, 2006, 25(4): 933-941
https://doi.org/10.1897/05-229R.1
82 Thiele S, Seibicke T, Leinweber P. Sorption of sulfonamide antibiotic pharmaceuticals in soil particle size fractions. SETAC Europe 12th Annual Meeting, Vienna, Austria. Madison: Amer Soc Agronomy, 2002
Related articles from Frontiers Journals
[1] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[2] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[3] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[4] Zhengtao Shen, Zhen Li, Daniel S. Alessi. Stabilization-based soil remediation should consider long-term challenges[J]. Front. Environ. Sci. Eng., 2018, 12(2): 16-.
[5] Ling Li, Yu He, Xia Lu. New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study[J]. Front. Environ. Sci. Eng., 2018, 12(2): 11-.
[6] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[7] Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5-.
[8] Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20-.
[9] Ying Xu, Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1-.
[10] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[11] Qinqin Liu, Miao Li, Fawang Zhang, Hechun Yu, Quan Zhang, Xiang Liu. The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil treatment system[J]. Front. Environ. Sci. Eng., 2017, 11(2): 12-.
[12] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[13] Chunhao Dai, Pufeng Qin, Zhangwei Wang, Jian Chen, Xianshan Zhang, Si Luo. Mercury enrichment in Brassica napus in response to elevated atmospheric mercury concentrations[J]. Front. Environ. Sci. Eng., 2017, 11(1): 2-.
[14] Lei Xia, Guo Liu, Chunmei Chen, Meiyan Wen, Yangyang Gao. Red soil for sediment capping to control the internal nutrient release under flow conditions[J]. Front. Environ. Sci. Eng., 2016, 10(6): 14-.
[15] Ying Han, Huiting Xie, Wenbin Liu, Haifeng Li, Mengjing Wang, Xuebin Chen, Xiao Liao, Nan Yan. Assessment of pollution of potentially harmful elements in soils surrounding a municipal solid waste incinerator, China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed