Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (4) : 565-574
Adsorption behavior of antibiotic in soil environment: a critical review
Shiliang WANG,Hui WANG()
State Key Joint Laboratory on Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
Download: PDF(155 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Antibiotics are used widely in human and veterinary medicine, and are ubiquitous in environment matrices worldwide. Due to their consumption, excretion, and persistence, antibiotics are disseminated mostly via direct and indirect emissions such as excrements, sewage irrigation, and sludge compost and enter the soil and impact negatively the natural ecosystem of soil. Most antibiotics are amphiphilic or amphoteric and ionize. A non-polar core combined with polar functional moieties makes up numerous antibiotic molecules. Because of various molecule structures, physicochemical properties vary widely among antibiotic compounds. Sorption is an important process for the environment behaviors and fate of antibiotics in soil environment. The adsorption process has decisive role for the environmental behaviors and the ultimate fates of antibiotics in soil. Multiply physicochemical properties of antibiotics induce the large variations of their adsorption behaviors. In addition, factors of soil environment such as the pH, ionic strength, metal ions, and organic matter content also strongly impact the adsorption processes of antibiotics. Review about adsorption of antibiotics on soil can provide a fresh insight into understanding the antibiotic-soil interactions. Therefore, literatures about the adsorption mechanisms of antibiotics in soil environment and the effects of environment factors on adsorption behaviors of antibiotics in soil are reviewed and discussed systematically in this review.

Keywords adsorption      antibiotics      environment factors      soil     
Corresponding Authors: Hui WANG   
Issue Date: 25 June 2015
 Cite this article:   
Shiliang WANG,Hui WANG. Adsorption behavior of antibiotic in soil environment: a critical review[J]. Front. Environ. Sci. Eng., 2015, 9(4): 565-574.
E-mail this article
E-mail Alert
Articles by authors
Shiliang WANG
selected classes representative compounds core structure basic properties
aminoglycosides apramycin comprised of two or more amino sugars joined by a glycoside linkage to a hexose nucleus of the drug. The structure of these antibiotics is derived from these two molecules. MM: 332.4-615.6 (g·mol-1)
gentamycin WS: 10-500 (g·L-1)
kanamycin log KOW:-8.1 - -0.8
neomycin pKa: 6.9-8.5
sisomycin HC: 8.5 × 10-12-4.1 × 10-12
β-lactams amoxicillin comprised of a thiazolidine ring connected to a β-lactam ring, to which a side chain is attached. MM: 334.4-470.3 (g·mol-1)
ampicillin WS: 22-10100 (mg·L-1)
azlocillin log KOW: 0.9-2.9
benzylpenicillin pKa: 2.7
carbenicillin HC: 2.5 × 10-19-1.2 × 10-12
penicillin G
glycopeptides vancomycin comprised of carbohydrate moieties (glycans) covalently attached to the side chains of an amino acid. MM: 1450.7 (g·mol-1)WS:>100 (mg·L-1)not soluble in octanolpKa: 5.0HC: negligible
macrolides azithromycin comprised of highly substituted monocyclic lactone with one or more saccharides glycosidically attached to hydroxyl groups. The lactone rings are usually 12, 14 or 16-membered. MM: 687.9-916.1 (g·mol-1)
clarithromycin WS: 0.45-15 (mg·L-1)
erythromycin log KOW: 1.6-3.1
roxithromycin pKa: 7.7-8.9
spiramycin HC: 7.8 × 10-36-2.0 × 10-26
fluorquinolones ciprofloxacinenrofloxacin,flumequin,sarafloxacin containing two fused rings with a carboxylic acid and a ketone group. MM: 229.5-417.6 (g·mol-1)WS: 3.2-17790 (mg·L-1)log Kow: -1.0-1.6pKa: 8.6HC: 5.2 × 10-17-3.2 × 10-8
sulphonamides sulphanilamide characterized by sulfonyl group connected to an amine group. MM: 172.2-300.3 (g·mol-1)
sulphadimethoxine WS: 7.5-1500 (mg·L-1)
sulphadimidine log KOW: -0.1-1.7
sulphamethoxazole pKa: 2~3; 4.5-10.6
sulphapyridine HC: 1.3 × 10-12-1.8 × 10-8
tetracyclines chlortetracycline containing an octrahydronaphtacene ring skeleton, consisting of 4 fused rings. MM: 444.5-527.6 (g·mol-1)
doxycycline WS: 203-52000 (mg·L-1)
oxytetracycline log KOW: -1.3-0.05
tetracycline pKa: 3.3; 7.7; 9.3
doxycycline HC: 1.7 × 10-23-4.8 × 10-23
erythro-mycin A
Tab.1  Basically physicochemical properties of selected classes of antibiotics
selected classes representative compounds sorbents conditions Kd /(L·kg-1)
fluoroquinolones enrofloxacin three kinds of sandy loam soils; pH: 4.9,5.3,7.5; 24 h; (20±1)℃ 260-5610 [48]
ciprofloxacin one kind of sandy loam soil; pH: 5.3; 24 h; (20±1)℃ 430 [48]
sulfonamides sulfamethazine two kinds of soil; pH: 7.5,7.2 14 h; 0.01 mol·L-1 CaCl2 4.2-6.8 [49]
tetracyclines oxytetracycline three kinds of sandy loam soils; pH: 6.1,5.6,6.3; 24 h; 0.01 mol·L-1 CaCl2 420-1030 [50]
one kind of wood soil; pH: 5.3one kind of plain soil: pH: 6.0 72 h; 10 mmol·L-1 PIPES buffer solution, 1.5 mmol·L-1 NaN3 351.9-3910152.6-1308 [51]
tetracycline one kind of organic matter-rich soil; pH: 4.6, 6.1 24 h; 0.01 mol·L-1 CaCl2 1140-1620 [52]
macrolides tylosin three kinds of sandy loam soils; pH: 6.1,5.6,6.3 24 h; 0.01 mol·L-1 CaCl2 8.3-128 [50]
abamectin 24 h; 0.01 mol·L-1 CaCl2 7-134 [53]
Tab.2  Literature data of sorption coefficients of antibiotics in soil
1 Wei Y M, Zhang Y, Xu J, Guo C S, Li L, Fan W H. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography–tandem mass spectrometry. Frontiers of Environmental Science & Engineering, 2014, 8(3): 357-371
2 Li X W, Shi H C, Li K X, Zhang L, Gan Y P. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(6): 888-894
3 Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle change. Environmental Health Perspectives, 1999, 107(6 Suppl 6): 907-938
4 Golet E M, Xifra I, Siegrist H, Alder A C, Giger W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 2003, 37(15): 3243-3249
5 Halling-S?rensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützh?ft H C, J?rgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere, 1998, 36(2): 357-393
6 Díaz-Cruz M S, López de Alda M J, Barceló D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 2003, 22(6): 340-351
7 Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research, 2007, 41(18): 4164-4176
8 Boxall A B A, Kolpin D W, Halling-Sorensen B, Tolls J. Are veterinary medicines causing environmental risks? Environmental Science & Technology, 2003, 37(15): 286A-294A
9 G?bel A, Thomsen A, McArdell C S, Joss A, Giger W. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 2005, 39(11): 3981-3989
10 Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils—A review. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167
11 Alder A C, McArdell C S, Golet E M, Ibric S, Molnar E, Nipales N S, Giger W. Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland. In: Daughton C G, Jones-Lepp T, Eds. Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. Washington D C.: American Chemical Society, 2001, 56-69
12 Boxall A B A, Blackwell P, Cavallo R, Kay P, Tolls J. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters, 2002, 131(1-2): 19-28
13 Hernando M D, Mezcua M, Fernández-Alba A R, Barceló D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 2006, 69(2): 334-342
14 Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 2008, 8(1): 1-13
15 Bailón-Pérez M I, Garcia-Campa?a A M, Cruces-Blanco C, del Olmo Iruela M. Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. Journal of Chromatography. A, 2008, 1185(2): 273-280
16 Chen Z H, Deng S B, Wei H R, Wang B, Huang J, Yu G. Activated carbons and amine-modified materials for carbon dioxide capture — A review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326-340
17 Li L, Xu J, Guo C S, Zhang Y. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture. Frontiers of Environmental Science & Engineering, 2013, 7(3): 382-387
18 Peng Y, Li J H. Ammonia adsorption on graphene and graphene oxide: a first-principles study. Frontiers of Environmental Science & Engineering, 2013, 7(3): 403-411
19 Zhou Q, Wang M Q, Li A M, Shuang C D, Zhang M C, Liu X H, Wu L Y. Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid. Frontiers of Environmental Science & Engineering, 2013, 7(3): 412-419
20 Kümmerer K. Antibiotics in the aquatic environment: a review—Part I. Chemosphere, 2009, 75(4): 417-434
21 Petrovi? M, Hernando M D, Díaz-Cruz M S, Barceló D. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. Journal of Chromatography. A, 2005, 1067(1-2): 1-14
22 Ikehata K, Naghashkar N J, El-Din M G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Science and Engineering, 2006, 28(6): 353-414
23 Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 2009, 35(2): 402-417
24 Erkel G. Biochemie der Antibiotika: Struktur-Biosynthese-Wirk Mechanismus. Heidelberg: Spektrum Akademischer Verlag, 1992, 389
25 Halling-S?rensen B, Sengel?v G, Tj?rnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271
26 Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography. A, 2000, 882(1-2): 109-133
27 Mitscher L A. The Chemistry of the Tetracycline Antibiotics. Basel: Marcel Dekker, 1978, 330
28 Ingerslev F, Halling-S?rensen B. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467-2473
29 Wetzstein H G. Biologische abbaubarkeit der gyrasehemmer. Pharmazie in Unserer Zeit, 2001, 30(5): 450-457<450::AID-PAUZ450>3.0.CO;2-F
30 Xu Z, Zhang Q, Fang H H P. Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Critical Reviews in Environmental Science and Technology, 2003, 33(4): 363-389
31 Xu W H, Zhang G, Zou S C, Li X D, Liu Y C. Determination of selected antibiotics in the Victoria Harbor and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 2007, 145(3): 672-679
32 Sun Y, Huang H, Sun Y, Wang C, Shi X L, Hu H Y, Kameya T, Fujie K. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent. Frontiers of Environmental Science & Engineering, 2014, 8(1): 18-26
33 Sui Q, Huang J, Lu S G, Deng S B, Wang B, Zhao W T, Qiu Z F, Yu G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science & Engineering, 2014, 8(1): 62-68
34 Rao K F, Li N, Ma M, Wang Z J. In vitro agonistic and antagonistic endocrine disrupting effects of organic extracts from waste water of different treatment processes. Frontiers of Environmental Science & Engineering, 2014, 8(1): 69-78
35 Liu C L, Xu Y P, Ma M, Huang B B, Wu J D, Meng Q Y, Wang Z J, Gearheart R A. Evaluation of endocrine disruption and dioxin-like effects of organic extracts from sewage sludge in autumn in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(3): 433-440
36 H?per H, Kues J, Nau H, Hamscher G. Eintrag und verbleib von tierarzneimittelwirkstoffen in B?den. Bodenschutz, 2002, 4(2): 141-148
37 Hamscher G, Sczesny S, H?per H, Nau H. Tierarzneimittel als persistente organische Kontaminanten von B?den. 10 Jahre Boden-Dauerbeobachtung in Niedersachsen, 2001, 10
38 Sengel?v G, Agerso Y, Halling-s?rensen B, Baloda S B, Andersen J S, Jensen L B. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environment International, 2003, 28(7): 587-595
39 Winckler C, Grafe A. Stoffeintrag Durch Tierarzneimittel und Pharmakologisch Wirksame Fuutterzusatzstoffe unter Besonderer Berücksichtigung von Tetrazyklinen. Berlin: UBA-Texte 44/00, 2000, 145
40 Schüller S. Anwendung antibiotisch wirksamer Substanzen beim Tier und Beurteilung der Umweltsicherheit entsprechender Produkte. 3. Statuskolloquium ?kotoxikologischer Forschungen in der Euregio Bodensee, 1998
41 Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 2010, 158(9): 2992-2998
42 Hamscher G, Abuquare S, Sczesny S, H?per H, Nau H. Determination of Tetracyclines in Soil and Water Samples from Agricultural Areas in Lower Saxony. Veldhoven, NL: Presented at Euro Residue IV, 2000
43 Kolpin D W, Meyer M T, Barber L B, Zaugg S D, Furlong E T, Buxton H T. A national reconnaissance for antibiotics and hormones in streams of the United States. Presented at SETAC 21st Annual Meeting in North America, Nashville, TN, November 12-16, 2000
44 Tolls J. Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science & Technology, 2001, 35(17): 3397-3406
45 Sassman S A, Lee L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology, 2005, 39(19): 7452-7459
46 Jones A D, Bruland G L, Agrawal S G, Vasudevan D. Factors influencing the sorption of oxytetracycline to soils. Environmental Toxicology and Chemistry, 2005, 24(4): 761-770
47 Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, andclay-humic complexes. Environmental Science & Technology, 2007, 41(6): 1928-1933
48 Nowara A, Burhenne J, Spiteller M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1459-1463
49 Accinelli C, Koskonen W C, Becker J M, Sadowsky M J. Environmental fate of two sulfonamide antimicrobial agents in soils. Journal of Agricultural and Food Chemistry, 2007, 55(7): 2677-2682
50 Rab?lle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline, and tylosin in soil. Chemosphere, 2000, 40(7): 715-722
51 Figueroa R A, Mackay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environmental Science & Technology, 2005, 39(17): 6664-6671
52 Sithole B B, Guy R D. Models for oxytetracycline in aquatic environments. 1. Interaction with bentonite clay systems. Water, Air, and Soil Pollution, 1987, 32(3-4): 303-314
53 Gruber V F, Halley B A, Hwang S G, Ku C C. Mobility of avermectin B1a in soil. Journal of Agricultural and Food Chemistry, 1990, 38(3): 886-890
54 Kay P, Blackwell P A, Boxall A B. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 2004, 23(5): 1136-1144
55 Zhang H, Huang C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 2007, 66(8): 1502-1512
56 Gu C, Karthikeyan K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(23): 9166-9173
57 Figueroa R A, Leonard A, Mackay A A. Modeling tetracycline antibiotic sorption to clays. Environmental Science & Technology, 2004, 38(2): 476-483
58 MacKay A A, Canterbury B. Oxytetracycline sorption to organic matter by metal-bridging. Journal of Environmental Quality, 2005, 34(6): 1964-1971
59 Wessels J M, Ford W E, Szymczak W, Schneider S. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: A spectroscopic study. Journal of Physical Chemistry B, 1998, 102(46): 9323-9331
60 Gu C, Karthikeyan K G, Sibley S D, Pedersen J A. Complexation of the antibiotic tetracycline with humic acid. Chemosphere, 2007, 66(8): 1494-1501
61 Sibley S D, Pedersen J A. Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid. Environmental Science & Technology, 2008, 42(2): 422-428
62 Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 2005, 39(24): 9509-9516
63 Kahle M, Stamm C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environmental Science & Technology, 2007, 41(1): 132-138
64 Bialk H M, Pedersen J A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environmental Science & Technology, 2008, 42(1): 106-112
65 Yeager R L, Halley B A. Sorption/desorption of [14C]efrotomycin with soils. Journal of Agricultural and Food Chemistry, 1990, 38(3): 883-886
66 Lützh?ft H C H, Vaes W H J, Freidig A P, Halling-S?rensen B, Hermens J L M. 1-Octanol/water distribution coefficient of oxolinic acid: influence of pH and its relation to the interaction with dissolved organic carbon. Chemosphere, 2000, 40(7): 711-714
67 Porubcan L S, Serna C J, White J L, Hem S L. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite. Journal of Pharmaceutical Sciences, 1978, 67(8): 1081-1087
68 Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(8): 2660-2667
69 Tolls J, Gebbink W, Cavallo R. pH-dependence of sulfonamide antibiotic sorption: data and model evaluation. SETAC Europe 12th Annual Meeting, Vienna, Austria. Madison: Amer Soc Agronomy, 2002, 12-16
70 Sithole B B, Guy R D. Models for oxytetracycline in aquatic environments. 2. Interactions with humic substances. Water, Air, and Soil Pollution, 1987, 32(3-4): 315-321
71 Loke M L, Tj?rnelund J, Halling-S?rensen B. Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 2002, 48(3): 351-361
72 Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 2009, 76(4): 558-564
73 Zhang J Q, Dong Y H. Influence of strength and special of cation on adsorption of norfloxacin in typical soils of China. Environmental Sciences, 2007, 28(10): 2383-2388 (in Chinese)
74 Picó Y, Andreu V. Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1287-1299
75 Wang Y J, Jia D A, Sun R J, Zhu H W, Zhou D M. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environmental Science & Technology, 2008, 42(9): 3254-3259
76 Marengo J R, Kok R A, O’Brien K, Velagaleti R R, Stamm J M. Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environmental Toxicology and Chemistry, 1997, 16(3): 462-471
77 Kulshrestha P, Giese R F Jr, Aga D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science & Technology, 2004, 38(15): 4097-4105
78 Holten L?tzh?ft H C, Vaes Wouter H J, Freidig Andreas P, Halling-S?rensen B, Hermens Joop L M. Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by “negligible depletion” SPME-HPLC. Environmental Science & Technology, 2000, 34(23): 4989-4994
79 Carrasquillo A J, Bruland G L, MacKay A A, Vasudevan D. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environmental Science & Technology, 2008, 42(20): 7634-7642
80 Zhang M K, Wang L P, Zheng S A. Adsorption and transport characteristics of two exterior-source antibiotics in some agricultural soils. Acta Ecologica Sinica, 2008, 28(2): 761-766 (in Chinese)
81 Ter Laak T L, Gebbink W A, Tolls J. Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environmental Toxicology and Chemistry, 2006, 25(4): 933-941
82 Thiele S, Seibicke T, Leinweber P. Sorption of sulfonamide antibiotic pharmaceuticals in soil particle size fractions. SETAC Europe 12th Annual Meeting, Vienna, Austria. Madison: Amer Soc Agronomy, 2002
Related articles from Frontiers Journals
[1] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[2] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[3] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[4] Zhengtao Shen, Zhen Li, Daniel S. Alessi. Stabilization-based soil remediation should consider long-term challenges[J]. Front. Environ. Sci. Eng., 2018, 12(2): 16-.
[5] Ling Li, Yu He, Xia Lu. New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study[J]. Front. Environ. Sci. Eng., 2018, 12(2): 11-.
[6] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[7] Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5-.
[8] Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20-.
[9] Ying Xu, Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1-.
[10] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[11] Qinqin Liu, Miao Li, Fawang Zhang, Hechun Yu, Quan Zhang, Xiang Liu. The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil treatment system[J]. Front. Environ. Sci. Eng., 2017, 11(2): 12-.
[12] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[13] Chunhao Dai, Pufeng Qin, Zhangwei Wang, Jian Chen, Xianshan Zhang, Si Luo. Mercury enrichment in Brassica napus in response to elevated atmospheric mercury concentrations[J]. Front. Environ. Sci. Eng., 2017, 11(1): 2-.
[14] Lei Xia, Guo Liu, Chunmei Chen, Meiyan Wen, Yangyang Gao. Red soil for sediment capping to control the internal nutrient release under flow conditions[J]. Front. Environ. Sci. Eng., 2016, 10(6): 14-.
[15] Ying Han, Huiting Xie, Wenbin Liu, Haifeng Li, Mengjing Wang, Xuebin Chen, Xiao Liao, Nan Yan. Assessment of pollution of potentially harmful elements in soils surrounding a municipal solid waste incinerator, China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 7-.
Full text