Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (1) : 112-120
Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration
Xiaojiang FAN1,Yi TAO1,Dequan WEI1,Xihui ZHANG1,*(),Ying LEI1,Hiroshi NOGUCHI2
1. Research Center for Environmental Engineering & Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
2. Meidensha Corporation, Meiko Building, 5-5-5 Osaki, Shinagawa-ku, Tokyo 141-8616, Japan
Download: PDF(661 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The performance of an integrated process including coagulation, ozonation, ceramic ultrafiltration (UF) and biologic activated carbon (BAC) filtration was investigated for the removal of organic matter and disinfection by-products (DBPs) precursors from micro-polluted surface water. A pilot scale plant with the capacity of 120 m3 per day was set up and operated for the treatment of drinking water. Ceramic membranes were used with the filtration area of 50 m2 and a pore size of 60 nm. Dissolved organic matter was divided into five fractions including hydrophobic acid (HoA), base (HoB) and neutral (HoN), weakly hydrophobic acid (WHoA) and hydrophilic matter (HiM) by DAX-8 and XAD-4 resins. The experiment results showed that the removal of organic matter was significantly improved with ozonation in advance. In sum, the integrated process removed 73% of dissolved organic carbon (DOC), 87% of UV254, 77% of trihalomethane (THMs) precursors, 76% of haloacetic acid (HAAs) precursors, 83%of trichloracetic aldehyde (CH) precursor, 77% of dichloroacetonitrile (DCAN) precursor, 51% of trichloroacetonitrile (TCAN) precursor, 96% of 1,1,1-trichloroacetone (TCP) precursor and 63% of trichloronitromethane (TCNM) precursor. Hydrophobic organic matter was converted into hydrophilic organic matter during ozonation/UF, while the organic matter with molecular weight of 1000–3000 Da was remarkably decreased and converted into lower molecular weight organic matter ranged from 200–500 Da. DOC had a close linear relationship with the formation potential of DBPs.

Keywords ceramic ultrafiltration(UF)      ozonation      organic matter      hydrophilic      hydrophobic      disinfection by-products     
Corresponding Authors: Xihui ZHANG   
Online First Date: 09 July 2014    Issue Date: 31 December 2014
 Cite this article:   
Xiaojiang FAN,Yi TAO,Dequan WEI, et al. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration[J]. Front. Environ. Sci. Eng., 2015, 9(1): 112-120.
E-mail this article
E-mail Alert
Articles by authors
Xiaojiang FAN
Dequan WEI
Ying LEI
parameters units raw water product water Chinese drinking water standards
pH 6.59–6.94 6.4–7.0 6.5–8.5
temperature °C 18.8–21.5 18.5–21.7 not defined
turbidity NTU 8.79–62.5 <0.2 1
ammonia mg·L-1 1.192–2.581 0.01–0.65 0.5
nitrite mg·L-1 0.347–0.677 0–0.048 1.00
Fe mg·L-1 0.4–0.8 <0.05 0.3
Mn mg·L-1 0.04–0.06 <0.01 0.1
Br- mg·L-1 <0.02 <0.01 not defined
B r O 3 - mg·L-1 <0.005 <0.005 0.01
DOCa) mg·L-1 1.92–2.83 <1 not defined
CODMn mg·L-1 1.315–2.853 <0.5 3
UV254 m-1 3.4–6.6 <1 not defined
Tab.1  Characteristics of raw water and product water of the pilot plant
Fig.1  Schematic representing the pilot scale treatment process for drinking water
Fig.2  Analytical procedure for preparative fractionation of dissolved organic carbon
compound precursor ions transition ions recovery /%(n = 5) LODa)/(μg·L-1) LOQb) /(μg·L-1)
CHCl3 95±0.5 0.02 0.5
CHCl2Br 96±1 0.016 0.4
CHClBr2 95±1 0.016 0.4
CHBr3 93±1 0.025 0.6
CH 96±1 0.04 0.5
DCAN 94±2 0.05 0.4
TCAN 95±1 0.045 0.6
TCP 92±3 0.05 0.8
TCNM 93±2 0.05 0.8
MCAA 92.8 36.7 98±0.5 0.53 1.5
MBAA 136.8 78.7 101±2 0.016 0.053
DCAA 126.9 82.6 95±3 0.025 0.083
BCAA 172.6 80.8 97±3 0.04 0.12
TCAA 162.8 118.8 100±2 0.079 0.26
DBAA 218.7 80.8 102±4 0.16 0.51
BDCAA 208.0 80.7 85±2 0.4 1.3
DBCAA 252.7 80.8 91±1 0.9 2.6
Tab.2  Quality control performances during multiple parameter analyses
Fig.3  Removal of DOC during treatments with or without ozonation
Fig.4  The transformation of different fractions during treatment process((a) for without ozone, (b) for with ozone)
Fig.5  The molecular weight distribution of organic matter during UF without (a) or with ozonation(b)
Fig.6  Removal of DBPs precursors during treatments with or without ozonation (a–f) and the correlation between DOC, SUVA, THMFP, and HAAFP (g, h)
1 Chen C, Zhang X, Zhu L, He W, Han H. Changes in different organic matter fractions during conventional treatment and advanced treatment. Journal of Environmental Sciences (China), 2011, 23(4): 582–586 pmid: 21793399
2 Du H, Xu Y. Determination of the microbial origin of geosmin in Chinese liquor. Agricultural and Food Chemistry, 2012, 60(9): 2288–2292 pmid: 22324746
3 Chowdhury S, Champagne P, McLellan P J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review. Science of the Total Environment, 2009, 407(14): 4189–4206 pmid: 19419751
4 Lavonen E E, Gonsior M, Tranvik L J, Schmitt-Kopplin P, K?hler S J. Selective chlorination of natural organic matter: identification of previously unknown disinfection byproducts. Environmental Science & Technology, 2013, 47(5): 2264–2271 pmid: 23373647
5 Kim H, Dempsey B A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. Journal of Membrane Science, 2013, 428: 190–197
6 Sierka R A. An Energy Saving Process for the Reactivation of Activated Carbon Saturated with Organic Contaminants. In: Proceedings of NATO Advanced Research Workshop on Security of Industrial Water Supply and Management, Ankara, Turkey, 2010, 193–208
7 von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37(7): 1443–1467 pmid: 12600374
8 Chiang P C, Chang E E, Liang C H. NOM characteristics and treatabilities of ozonation processes. Chemosphere, 2002, 46(6): 929–936 pmid: 11922074
9 Huang W J, Fang G C, Wang C C. The determination and fate of disinfection by-products from ozonation of polluted raw water. Science of the Total Environment, 2005, 345(1–3): 261–272 pmid: 15919544
10 Rigobello E S, Dantas A D B, Di Bernardo L, Vieira E M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere, 2013, 92(2): 184–191 pmid: 23540811
11 Chen Z, Valentine R L. The influence of the pre-oxidation of natural organic matter on the formation of N-nitrosodimethylamine (NDMA). Environmental Science & Technology, 2008, 42(14): 5062–5067 pmid: 18754348
12 Harman B I, Koseoglu H, Yigit N O, Sayilgan E, Beyhan M, Kitis M. The removal of disinfection by-product precursors from water with ceramic membranes. Water Science and Technology, 2010, 62(3): 547–555 pmid: 20706002
13 Karnik B S, Davies S H R, Chen K C, Jaglowski D R, Baumann M J, Masten S J. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Research, 2005, 39(4): 728–734 pmid: 15707646
14 Karnik B S, Davies S H R, Baumann M J, Masten S J. Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environmental Science & Technology, 2005, 39(19): 7656–7661 pmid: 16245840
15 Schlichter B, Mavrov V, Chmiel H. Study of a hybrid process combining ozonation and membrane filtration-filtration of model solutions. Desalination, 2003, 156(1–3): 257–265
16 Byun S, Davies S H R, Alpatova A L, Corneal L M, Baumann M J, Tarabara V V, Masten S J. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: comparison of Ti, Fe and Mn oxide coated membranes for water quality. Water Research, 2011, 45(1): 163–170 pmid: 20822791
17 Sartor M, Schlichter B, Gatjal H, Mavrov V. Demonstration of a new hybrid process for the decentralised drinking and service water production from surface water in Thailand. Desalination, 2008, 222(1–3): 528–540
18 Zhang X H, Guo J N, Wang L Y, Hu J Y, Zhu J. In situ ozonation to control ceramic membrane fouling in drinking water treatment. Desalination, 2013, 328: 1–7
19 Fan X J, Tao Y, Wang L Y, Zhang X H, Lei Y, Wang Z, Noguchi H. Performance of integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water. Desalination, 2014, 335(1): 47–54
20 Leenheer J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology, 1981, 15(5): 578–587 pmid: 22283952
21 Ma H, Allen H E, Yin Y. Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Research, 2001, 35(4): 985–996 pmid: 11235894
22 Clesceri L S, Greenberg A E, Eaton A D. Standard Methods for Examination of Water & Wastewater, 20th ed. American Public Health Association, 1998
23 Lei Y, Yasojima M, Wang L Y, Fan X J, Tao Y, Zhang X H. Determination of nine haloacetic acids in tap water by liquid chromatography-tandem mass spectrometry. China Water and Wastewater, 2013, 29(20): 124–129 (in Chinese)
24 Zhou Q H, Cabaniss S E, Maurice P A. Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances. Water Research, 2000, 34(1): 3505–3514
25 Yang J, Yuan D, Weng T. Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination, 2010, 263(1–3): 271–278
26 Chowdhury S, Champagne P, McLellan P J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review. Science of the Total Environment, 2009, 407(14): 4189–4206 pmid: 19419751
27 Schlichter B, Mavrov V, Chmiel H. Study of a hybrid process combining ozonation and microfiltration/ultrafiltration for the drinking water production from surface water. Desalination, 2004, 168: 307–317
28 Volk C, Renner P, Roche H, Paillard H, Joret J C. Effects of ozone on the production of biodegradable dissolved organic carbon (BDOC) during water treatment. Ozone Science and Engineering, 1993, 15(5): 389–404
29 Qiao L, Liu Y, Hudson S P, Yang P, Magner E, Liu B. A nanoporous reactor for efficient proteolysis. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(1): 151–157 pmid: 17960551
30 Monteiro M J. Nanoreactors for polymerizations and organic reactions. Marcromolecules, 2010, 43(3): 1159–1168
Related articles from Frontiers Journals
[1] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[2] Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon[J]. Front. Environ. Sci. Eng., 2018, 12(1): 6-.
[3] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[4] Shuai Liang, Peng Gao, Xiaoqi Gao, Kang Xiao, Xia Huang. Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles[J]. Front. Environ. Sci. Eng., 2016, 10(6): 9-.
[5] Jiaxuan YANG, Jun MA, Dan SONG, Xuedong ZHAI, Xiujuan KONG. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilters under low temperature conditions—A pilot study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 5-.
[6] Bing PEI,Hongyang CUI,Huan LIU,Naiqiang YAN. Chemical characteristics of fine particulate matter emitted from commercial cooking[J]. Front. Environ. Sci. Eng., 2016, 10(3): 559-568.
[7] Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083.
[8] Huan HE,Qian SUI,Shuguang LU,Wentao ZHAO,Zhaofu QIU,Gang YU. Effect of effluent organic matter on ozonation of bezafibrate[J]. Front. Environ. Sci. Eng., 2015, 9(6): 962-969.
[9] Xiaolu ZHANG,Hongwei YANG,Xiaofeng WANG,Yu ZHAO,Xiaomao WANG,Yuefeng XIE. Concentration levels of disinfection by-products in 14 swimming pools of China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 995-1003.
[10] Jianbing WANG,Guoqing WANG,Chunli YANG,Shaoxia YANG,Qing HUANG. Catalytic ozonation of organic compounds in water over the catalyst of RuO2/ZrO2-CeO2[J]. Front. Environ. Sci. Eng., 2015, 9(4): 615-624.
[11] Hong SUN,Min SUN,Yaobin ZHANG,Xie QUAN. Catalytic ozonation of reactive red X-3B in aqueous solution under low pressure: decolorization and OH· generation[J]. Front. Environ. Sci. Eng., 2015, 9(4): 591-595.
[12] Yuan ZHANG,Chunming HU,Tao YU. Photodegradation of chromophoric dissolved organic matters in the water of Lake Dianchi, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 575-582.
[13] Xue JIN,Jiangyong HU. Role of water chemistry on estrone removal by nanofiltration with the presence of hydrophobic acids[J]. Front. Environ. Sci. Eng., 2015, 9(1): 164-170.
[14] Yuan ZHANG,Yan ZHANG,Tao YU. Quantitative characterization of Cu binding potential of dissolved organic matter (DOM) in sediment from Taihu Lake using multiple techniques[J]. Front.Environ.Sci.Eng., 2014, 8(5): 666-674.
[15] Yan ZHANG,Yuan ZHANG,Tao YU. Characterization of interaction between different adsorbents and copper by simulation experiments using sediment-extracted organic matter from Taihu Lake, China[J]. Front.Environ.Sci.Eng., 2014, 8(4): 510-518.
Full text