Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 276-287     https://doi.org/10.1007/s11783-014-0700-y
RESEARCH ARTICLE |
Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals
Fei LI1,Suocheng DONG1,Fujia LI2,Libiao YANG3,*()
1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. School of Public Policy and Management, Tsinghua University, Beijing 100084, China
3. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Download: PDF(285 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As the largest contributor to water impairment, agriculture-related pollution has attracted the attention of scientists as well as policy makers, and quantitative information is being sought to focus and advance the policy debate. This study applies the panel unit root, heterogeneous panel cointegration, and panel-based dynamic ordinary least squares to investigate the Environmental Kuznets Curve on environmental issues resulting from use of agricultural synthetic fertilizer, pesticide, and film for 31 provincial economies in mainland China from 1989 to 2009. The empirical results indicate a positive long-run co-integrated relationship between the environmental index and real GDP per capita. This relationship takes on the inverted U-shaped Environmental Kuznets Curve, and the value of the turning point is approximately 10,000–13,000, 85,000–89,000 and over 160,000 CNY, for synthetic fertilizer nitrogen indicator, fertilizer phosphorus indicator and pesticide indicator, respectively. At present, China is subject to tremendous environmental pressure and should assign more importance to special agriculture-related environmental issues.

Keywords Environmental Kuznets Curve      agrochemical      China     
Corresponding Authors: Libiao YANG   
Online First Date: 23 April 2014    Issue Date: 01 February 2016
 Cite this article:   
Libiao YANG,Fei LI,Suocheng DONG, et al. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals[J]. Front. Environ. Sci. Eng., 2016, 10(2): 276-287.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-014-0700-y
http://journal.hep.com.cn/fese/EN/Y2016/V10/I2/276
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Libiao YANG
Fei LI
Suocheng DONG
Fujia LI
Fig.1  Consumption of agricultural chemical fertilizer (a), pesticide and film (b) from 1989 to 2009 (Source: China Rural Statistical Yearbooks, various years)
indexabbreviation of index
GDP per capita/CNYGDP
gross agricultural output per capita/CNYGAO
nitrogen surplus from synthetic fertilizer per hectare cultivated area/kgNS
phosphorus surplus from synthetic fertilizer per hectare cultivated area/kgPS
agricultural pesticide use per hectare cultivated area/kgAP
agricultural film use per hectare cultivated area/kgAF
Tab.1  Agriculture-related environmental indices and economic indices
LLC a)IPS b)Fisher-ADF c)Fisher-PP
GDPindividual effects???7.68??13.40??3.87???2.80
individual effects and linear trends???8.81???6.82?15.79??18.98
D d) (GDP)individual effects?−2.04** e)?−2.95***112.86***?156.37***
individual effects and linear trends?−1.32*?−1.72**?87.89**?143.22***
GAOindividual effects???2.64???8.20?13.01??13.47
individual effects and linear trends???4.19???3.03?36.03??35.49
D(GAO)individual effects?−3.32***?−5.04***127.30***?272.48***
individual effects and linear trends−10.24***?−7.32***169.21***?216.52***
GDP2individual effects??11.25??15.13??1.17???0.70
individual effects and linear trends???8.86???9.56??5.44??10.03
D(GDP2)individual effects?−1.68**?−1.58**?86.95**?123.93***
individual effects and linear trends?−1.69**?−1.56**?81.39**?131.40***
GAO2individual effects???4.61??10.27??9.70???9.59
individual effects and linear trends???6.55???4.96?26.61??28.68
D(GAO2)individual effects?−3.40***?−4.62***120.10***?249.11***
individual effects and linear trends?−9.68***?−6.85***160.41***?206.32***
NSindividual effects?−7.28***?−2.51?90.27?141.31***
individual effects and linear trends?−2.68**???0.11?60.91??87.34
D(NS)individual effects−15.74***−13.29***291.53***?711.24***
individual effects and linear trends−14.95***−10.20***243.23***?400.71***
PSindividual effects?−8.45***?−2.54117.13?177.57***
individual effects and linear trends?−4.15***?−0.50?80.77?110.71***
D(PS)individual effects?−6.47***?−8.34***208.61***?442.82***
individual effects and linear trends−12.15***?−8.65***219.30***?356.07***
APindividual effects?−3.64***?−0.12?73.29?187.91***
individual effects and linear trends?−3.06***?−1.28?83.69?136.49***
D(AP)individual effects−19.70***−13.55***357.32***?516.35***
individual effects and linear trends−19.96***−12.83***259.72***?378.57***
AFindividual effects?−4.20***???0.07?71.40?124.85***
individual effects and linear trends−10.08***?−3.39?80.81?126.17***
D(AF)individual effects−24.61***−14.46***498.98***1039.26***
individual effects and linear trends−31.19***−15.65***216.96***?361.91***
Tab.2  Panel unit root test results
NS(GDP, GDP2)PS(GDP, GDP2)AP(GDP, GDP2)AF(GDP, GDP2)AP(GAO)AF(GAO)
NDT b)DIT c)NDTDITNDTDITNDTDITNDTDITNDTDIT
Panel ν−1.30−4.50?−0.14−3.40?−1.64−4.83???0.20−3.00−1.11?−4.32??1.03?−0.87
Panel ρ−1.99** d)???0.24?−3.51***−1.17?−3.48***−0.53?−1.76**??1.05−2.90***?−0.24−1.53*???0.60
Panel PP−5.87***−6.99***?−7.49***−8.34***?−8.19***−8.76***?−7.67***−8.15***−8.23***?−10.86***−6.39***?−8.00***
Panel ADF−7.63***−8.52***?−8.48***−6.18***?−8.32***−8.37***?−8.78***−7.93***−6.95***?−7.02***−6.32***−11.37***
Group ρ???0.54???2.26?−0.78??1.53?−0.50??1.98???0.71??2.99−0.43???1.31??0.48???2.69
Group PP−5.49***−6.62***?−6.65***−6.26***?−8.04***−9.21***?−7.41***−8.22***−8.46***−14.40***−7.28***?−8.24***
Group ADF−9.98***−7.38***−10.29***−5.14***−12.26***−9.57***−11.54***−8.84***−7.17***?−9.83***−7.69***−13.26***
Tab.3  Panel cointegration test results a)
CGDPGDP2shape of curveTP(2009 CNY)CGAOshape of curve
NSOLS?−7.31***a)?−5.71?2.50***?7.48?−0.15***?−6.76inverted U-shaped20,000
DOLS(1, 1)?−4.12***?−6.73?1.81***11.32?−0.11***−10.4013,000
DOLS(2, 2)?−4.23***?−5.84?1.89***?9.72?−0.12***?−8.8910,000
PSOLS−12.30***?−8.71?3.59***?9.74?−0.22***?−9.04inverted U-shaped16,000
DOLS(1, 1)?−3.75***?−4.88?1.31***?6.52?−0.07***?−4.8489,000
DOLS(2, 2)?−3.01***?−3.34?1.14***?4.72?−0.06***?−3.3985,000
APOLS?−8.72***?−3.65?2.12***?3.44?−0.10**?−2.44inverted U-shaped245,000?−2.63***−12.80?0.66***28.26linear
DOLS(1, 1)?−4.87***?−4.73?1.39***?5.23?−0.07***?−3.74160,000?−2.29***−12.40?0.62***22.62
DOLS(2, 2)?−3.70***?−2.96?1.09***?3.32?−0.05**?−2.07550,000?−1.85***?−8.11?0.56***16.12
AFOLS?−3.51***−10.82?0.70***18.48linear?−5.69***−13.45?1.13***19.34linear
DOLS(1, 1)?−3.46***?−9.101?0.69***12.54?−6.65***−13.59?1.28***17.65
DOLS(2, 2)?−3.21***?−6.75?0.66***?9.31?−7.49***−12.78?1.42***16.07
Tab.4  Panel cointegration estimation results by OLS and DOLS
Fig.2  Inverted U-shaped EKC relationship simulation for NS (a), PS (b) and AP (c)
Fig.1  Fig.A The agrichemicals and economy relationship by year, such as chemical fertilizer (a- 1989, b- 1999, c- 2009), pesticide (d- 1989, e- 1999, f- 2009) and film (g- 1989, h- 1999, i- 2009)

Source: China Rural Statistical Yearbooks, various years

1 Thorburn P J, Biggs J S, Weier K L, Keating B A. Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems & Environment, 2003, 94(1): 49–58
https://doi.org/10.1016/S0167-8809(02)00018-X
2 European Environment Agency (EEA). Source apportionment of nitrogen and phosphorus inputs into the aquatic environment (No.7/2005). Copenhagen: EEA, 2005
3 Zhang J, Jorgensen S E. Modeling of point and nonpoint nutrient loadings from a watershed. Environmental Modelling & Software, 2005, 20(5): 561–574
https://doi.org/10.1016/j.envsoft.2004.03.003
4 Kronvang B, Vagstad N, Behrendt H, Bogestrand J, Larsen S E. Phosphorus losses at the catchment scale within Europe: an overview. Soil Use and Management, 2007, 23(Suppl 1): 104–116
https://doi.org/10.1111/j.1475-2743.2007.00113.x
5 Department for Environment Food and Rural Affairs (DEFRA). Mapping the problem: risks of diffuse water pollution from agriculture. London: DEFRA, 2004
6 Department for Environment Food and Rural Affairs (DEFRA). Nitrates in water–the current status in England. London: DEFRA, 2007
7 United States Environmental Protection Agency (USEPA). National water quality inventory. Washington, D C: USEPA. 2009
8 Chen M, Chen J, Sun F. Estimating nutrient releases from agriculture in China: an extended substance flow analysis framework and a modeling tool. Science of the Total Environment, 2010, 408(21): 5123–5136
https://doi.org/10.1016/j.scitotenv.2010.07.030 pmid: 20691463
9 Zhang W, Tian Z, Zhang N, Li X. Nitrate pollution of groundwater in northern China. Agriculture, Ecosystems & Environment, 1996, 59(3): 223–231
https://doi.org/10.1016/0167-8809(96)01052-3
10 Liu Y, Chen S, Zhang Y. Study on Chinese agricultural EKC: evidence from fertilizer. Chinese Agricultural Science Bulletin, 2009, 16: 263–267 (in Chinese)
11 Grossman G, Krueger A B. Environmental impact of North American Free Trade Agreement. NBER Working Paper, No. 3914, 1991
12 Grossman G, Krueger A B. Economic growth and the environment. Quarterly Journal of Economics, 1995, 110(2): 353–377
https://doi.org/10.2307/2118443
13 Panayotou T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. Working Paper, International Labor Office, Technology and Employment Programme, 1993
14 Dinda S. Environmental Kuznets Curve hypothesis: a survey. Ecological Economics, 2004, 49(4): 431–455
https://doi.org/10.1016/j.ecolecon.2004.02.011
15 Brock W A, Taylor M S. Economic growth and the environment: a review of theory and empirics. In: Aghion P, Durlauf S, eds. Amsterdam: Handbook of Economic Growth, 2005, 1(28): 1749–1821
16 Antler J M, Heidebrink G. Environment and development: theory and international evidence. Economic Development and Cultural Change, 1995, 43(3): 603–625
https://doi.org/10.1086/452171
17 McConnell K E. Income and the demand for environmental quality. Environment and Development Economics, 1997, 2(4): 383–399
https://doi.org/10.1017/S1355770X9700020X
18 Shortle J S, Abler D. Environmental policies for agricultural pollution control. New York: CAB International Publishing, 2001
19 Cochard F, Willinger M, Xepapadeas A. Efficiency of nonpoint source pollution instruments: an experimental study. Environmental and Resource Economics, 2005, 30(4): 393–422
https://doi.org/10.1007/s10640-004-5986-y
20 Aftab A, Hanley N, Baiocchi G. Integrated regulation of non-point pollution: combining managerial controls and economic instruments under multiple environmental targets. Ecological Economics, 2010, 70(1): 24–33
https://doi.org/10.1016/j.ecolecon.2010.03.020
21 Managi S. Are there increasing returns to pollution abatement? Empirical analytics of the Environmental Kuznets Curve in pesticides. Ecological Economics, 2006, 58(3): 617–636
https://doi.org/10.1016/j.ecolecon.2005.08.011
22 Perman R, Stern D I. Evidence from panel unit root and cointegration tests that the Environmental Kuznets Curve does not exist. Australian Journal of Agricultural and Resource Economics, 2003, 47(3): 325–347
https://doi.org/10.1111/1467-8489.00216
23 Galeotti M, Manera M, Lanza A. On the robustness of robustness checks of the Environmental Kuznets Curve hypothesis. Environmental and Resource Economics, 2009, 42(4): 551–574
https://doi.org/10.1007/s10640-008-9224-x
24 Stern D I, Common M S. Is there an Environmental Kuznets Curve for sulfur? Journal of Environmental Economics and Management, 2001, 41(2): 162–178
https://doi.org/10.1006/jeem.2000.1132
25 Oh W, Lee K. Energy consumption and economic growth in Korea: testing the causality relation. Journal of Policy Modeling, 2004, 26(12): 973–981
https://doi.org/10.1016/j.jpolmod.2004.06.003
26 Copeland B, Taylor S. Trade, growth and the environment. Journal of Economic Literature, 2004, 42(1): 7–71
https://doi.org/10.1257/002205104773558047
27 Unruh G C, Moomaw W R. An alternative analysis of apparent EKC-type transitions. Ecological Economics, 1998, 25(2): 221–229
https://doi.org/10.1016/S0921-8009(97)00182-1
28 McCoskey S, Kao C. Comparing panel data cointegration tests with an application of the twin deficits problem. Working Paper, Center for Policy Research, Syracuse University, 1999
29 McCoskey S, Kao C. A Monte Carlo comparison of tests for cointegration in panel data. Journal of Propagation in Probability and Statistics, 2001, 1(2): 165–198
30 Mark N, Sul D. Nominal exchange rates and monetary fundamentals: evidence from a small Post-Bretton woods panel. Journal of International Economics, 2001, 53(1): 29–52
https://doi.org/10.1016/S0022-1996(00)00052-0
31 Andreoni J, Levinson A. The simple analytics of the Environmental Kuznets Curve. Journal of Public Economics, 2001, 80(2): 269–286
https://doi.org/10.1016/S0047-2727(00)00110-9
32 Stokey N L. Are there limits to growth? International Economic Review, 1998, 39(1): 1–31
https://doi.org/10.2307/2527228
33 Jones L E, Manuelli R E. Endogenous policy choice: the case of pollution and growth. Review of Economic Dynamics, 2001, 4(2): 369–405
https://doi.org/10.1006/redy.2000.0118
34 Israel D, Levinson A. Willingness to pay for environmental quality: testable empirical implications of the growth and environment literature. Contributions to Economic Analysis and Policy. Berkeley: Berkeley Electronic Press, 2004
35 Stern D I. The Environmental Kuznets Curve. International Society for Ecological Economics, Internet Encyclopedia of Ecological Economics, 2003
36 Stern D I. Between estimates of the emissions-income elasticity. Ecological Economics, 2010, 69(11): 2173–2182
https://doi.org/10.1016/j.ecolecon.2010.06.024
37 Wang S, Peng E, Wu G, Zhang T, Zhang J, Zhang C, Yu Y. Surveys of deposition and distribution pattern of pesticide droplets on crop leaves. Journal of Yunnan Agricultural University, 2010, 25(1): 113–117
38 Yuan P. Environmental economics study on agricultural pollution and its control. Dissertation for the Doctoral Degree, Beijing: Chinese Academy of Agricultural Sciences, 2008 (in Chinese)
39 Engle R F, Granger C W J. Cointegration and error correction: representation, estimation, and testing. Econometrica, 1987, 55(2): 251–276
https://doi.org/10.2307/1913236
40 Ozturk I, Aslan A, Kalyoncu H. Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries. Energy Policy, 2010, 38(8): 4422–4428
https://doi.org/10.1016/j.enpol.2010.03.071
41 Pedroni P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics, 1999, 61(S1): 653–670
https://doi.org/10.1111/1468-0084.61.s1.14
42 Li F, Dong S. L X, Liang Q, Yang W. Energy Consumption-Economic Growth Relationship and Carbon Dioxide Emissions in China. Energy Policy, 2011, 39(2): 568–573
https://doi.org/10.1016/j.enpol.2010.10.025
43 López-Pueyo C, Barcenilla-Visús S, Sanaú J, International R. D spillovers and manufacturing productivity: a panel data analysis. Structural Change and Economic Dynamics, 2008, 19(2): 152–172
https://doi.org/10.1016/j.strueco.2007.12.005
44 Levin A, Lin C, Chu C. Unit root tests in panel data: asymptotic and finite-sample properties. Journal of Econometrics, 2002, 108(1): 1–24
https://doi.org/10.1016/S0304-4076(01)00098-7
45 Im K S, Pesaran M H, Shin Y. Testing for unit roots in heterogeneous panels. Journal of Econometrics, 2003, 115(1): 53–74
https://doi.org/10.1016/S0304-4076(03)00092-7
46 Maddala G S, Wu S. Comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 1999, 61(s1): 631–652
https://doi.org/10.1111/1468-0084.61.s1.13
47 Choi I. Unit root tests for panel data. Journal of International Money and Finance, 2001, 20(2): 249–272
https://doi.org/10.1016/S0261-5606(00)00048-6
48 Pedroni P. Panel cointegration: asymptotic and finite sample properties of pooled time series tests, with an application to the PPP hypothesis: new results. Working Paper in Economics, Indiana University, 1997
49 Pedroni P. Panel cointegration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Economic Theory, 2004, 20: 597–625
50 Phillips P C B, Moon H R. Linear regression limits theory for non-stationary panel data. Econometrica, 1999, 67(5): 1057–1111
https://doi.org/10.1111/1468-0262.00070
51 Pedroni P. Fully modified OLS for heterogeneous cointegrated panels. In: Baltagi B H, ed. Advances in Econometrics. Nonstationary Panels, Panel Cointegration and Dynamic Panels. Amsterdam: JAI Press, 2000
52 Kao C, Chiang M H. On the estimation and inference of a cointegrated regression in panel data. In: Baltagi B H, ed. Advances in Econometrics. Nonstationary Panels, Panel Cointegration and Dynamic Panels. Amsterdam: JAI Press, 2000
53 Arrow K, Bolin B, Costanza R, Dasgupta P, Folke C, Holling C S, Jansson B O, Levin S, Mäler K G, Perrings C, Pimentel D. Economic growth, carrying capacity, and the environment. Science, 1995, 268(5210): 520–521
https://doi.org/10.1126/science.268.5210.520 pmid: 17756719
54 Cole M A, Rayner A J, Bates J M. The Environmental Kuznets Curve: an empirical analysis. Environment and Development Economics, 1997, 2(4): 401–416
https://doi.org/10.1017/S1355770X97000211
55 Park S, Lee Y. Regional model of EKC for air pollution: Evidence from the Republic of Korea. Energy Policy, 2011, 39(10): 5840–5849
https://doi.org/10.1016/j.enpol.2011.06.028
56 de Bruyn S M, van den Bergh J C J M, Opschoor J B. Economic growth and emissions: reconsidering the empirical basis of Environmental Kuznets Curves. Ecological Economics, 1998, 25(2): 161–175
https://doi.org/10.1016/S0921-8009(97)00178-X
57 Markus P. Technical progress, structural change and the Environmental Kuznets Curve. Ecological Economics, 2002, 2(3): 381–389
58 Roca J, Padilla E, Farre M, Galletto V. Economic growth and atmospheric pollution in Spain: discussing the Environmental Kuznets Curve hypothesis. Ecological Economics, 2001, 39(1): 85–99
https://doi.org/10.1016/S0921-8009(01)00195-1
59 Magnani E. The Environmental Kuznets Curve: development path or policy results. Environmental Modelling & Software, 2001, 16(2): 157–165
https://doi.org/10.1016/S1364-8152(00)00079-7
60 Orubu C O, Omotor D G. Environmental quality and economic growth: Searching for Environmental Kuznets Curves for air and water pollutants in Africa. Energy Policy, 2011, 39(7): 4178–4188
https://doi.org/10.1016/j.enpol.2011.04.025
Related articles from Frontiers Journals
[1] Dong Huang, Xiuhong Liu, Songzhu Jiang, Hongchen Wang, Junyan Wang, Yuankai Zhang. Current state and future perspectives of sewer networks in urban China[J]. Front. Environ. Sci. Eng., 2018, 12(3): 2-.
[2] Xiaolong Song, Jingwei Wang, Jianxin Yang, Bin Lu. An updated review and conceptual model for optimizing WEEE management in China from a life cycle perspective[J]. Front. Environ. Sci. Eng., 2017, 11(5): 3-.
[3] Yan Ma, Xiaoming Du, Yi Shi, Deyi Hou, Binbin Dong, Zhu Xu, Huiying Li, Yunfeng Xie, Jidun Fang, Zheng Li, Yunzhe Cao, Qingbao Gu, Fasheng Li. Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated sites in China: Advantages and challenges[J]. Front. Environ. Sci. Eng., 2016, 10(6): 6-.
[4] Meng Gao,Gregory R. Carmichael,Yuesi Wang,Dongsheng Ji,Zirui Liu,Zifa Wang. Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2[J]. Front. Environ. Sci. Eng., 2016, 10(5): 16-.
[5] Hallvard Ødegaard. A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR)[J]. Front. Environ. Sci. Eng., 2016, 10(4): 2-.
[6] Wenyan Wang, Wei Ouyang, Fanghua Hao, Yun Luan, Bo Hu. Spatial impacts of climate factors on regional agricultural and forestry biomass resources in north-eastern province of China[J]. Front. Environ. Sci. Eng., 2016, 10(4): 17-.
[7] Guoxia MA,Jinnan WANG,Fang YU,Yanshen ZHANG,Dong CAO. An assessment of the potential health benefits of realizing the goals for PM10 in the updated Chinese Ambient Air Quality Standard[J]. Front. Environ. Sci. Eng., 2016, 10(2): 288-298.
[8] Chao ZENG,Dongjie NIU,Youcai ZHAO. A comprehensive overview of rural solid waste management in China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 949-961.
[9] Yang PAN,Xiangru ZHANG,Jianping ZHAI. Whole pictures of halogenated disinfection byproducts in tap water from China’s cities[J]. Front. Environ. Sci. Eng., 2015, 9(1): 121-130.
[10] Kang XIAO, Ying XU, Shuai LIANG, Ting LEI, Jianyu SUN, Xianghua WEN, Hongxun ZHANG, Chunsheng CHEN, Xia HUANG. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect[J]. Front. Environ. Sci. Eng., 2014, 8(6): 805-819.
[11] Shuxiao WANG,Lei ZHANG,Long WANG,Qingru WU,Fengyang WANG,Jiming HAO. A review of atmospheric mercury emissions, pollution and control in China[J]. Front.Environ.Sci.Eng., 2014, 8(5): 631-649.
[12] Wenqian CAI,Wei MENG,Lusan LIU,Kuixuan LIN. Evaluation of the ecological status with benthic indices in the coastal system: the case of Bohai Bay (China)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 737-746.
[13] Lili QU,Tianzhu ZHANG,Wei LU. Assessing the potential of crop residue recycling in China and technology options based on a bottom-up model[J]. Front.Environ.Sci.Eng., 2014, 8(4): 570-579.
[14] Jiaxing GUO, Huan LIU, Yang JIANG, Dongquan HE, Qidong WANG, Fei MENG, Kebin HE. Neighborhood form and CO2 emission: evidence from 23 neighborhoods in Jinan, China[J]. Front Envir Sci Eng, 2014, 8(1): 79-88.
[15] Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020[J]. Front Envir Sci Eng, 2014, 8(1): 27-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed