Please wait a minute...

Frontiers of Environmental Science & Engineering

Front Envir Sci Eng    2014, Vol. 8 Issue (2) : 151-161
Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste
Yan ZHAO1, Wenjing LU2, Jiajun CHEN1, Xiangfeng ZHANG1, Hongtao WANG2()
1. School of Environment, Beijing Normal University, Beijing 100875, China; 2. School of Environment, Tsinghua University, Beijing 100084, China
Download: PDF(318 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Ethanol production from lignocellulosic waste has attracted considerable attention because of its feasibility and the generation of valuable products. Previous studies have shown that pretreatment and hydrolysis are key processes for lignocellulose conversion. Hydrothermal process is a promising technique because of its efficiency to break down the lignocellulosic structures and produce fermentable hexoses. Most studies in this field have therefore focused on understanding these processes or optimizing the parameters, but commonly reported low yields of fermentable hexoses. The inability to produce high yields of fermentable hexoses is mainly attributed to inadequate information on the conversion mechanisms of lignocellulose, particularly the reaction rules of dissolution, which is a limiting step in the entire conversion process. This paper critically reviewed the progress done in the research and development of the hydrothermal dissolution and hydrolysis of lignocellulose. Principles, processes, and related studies on separate dissolution and asynchronous hydrolysis of lignin, hemicellulose, and cellulose are presented. Potential research prospects are also suggested.

Keywords lignocellulosic waste      hydrothermal conversion      separate dissolution      asynchronous hydrolysis      mechanism     
Corresponding Authors: WANG Hongtao,   
Issue Date: 01 April 2014
 Cite this article:   
Yan ZHAO,Hongtao WANG,Wenjing LU, et al. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste[J]. Front Envir Sci Eng, 2014, 8(2): 151-161.
E-mail this article
E-mail Alert
Articles by authors
Hongtao WANG
Wenjing LU
Jiajun CHEN
Xiangfeng ZHANG
Fig.1  Typical chromatogram of high-performance liquid chromatography analysis for liquid products from cellulose
Fig.2  Batch system of combined supercritical and subcritical reaction
1 reactor; 2 thermoelement for supercritical condition; 3 thermoelement for subcritical condition; 4 salt bath for supercritical condition; 5 salt bath for subcritical condition; 6 ice-water cooler; 7 electric heating elements; 8 temperature control system
Fig.3  Flow system of combined supercritical and subcritical reaction
1 water tank; 2 material sludge tank; 3 water pump; 4 material sludge pump; 5 preheater; 6 supercritical reactor; 7 primary water cooler; 8 subcritical reactor; 9 final water cooler; 10 product collector; 11 temperature control system; 12 manometer; 13 thermoelement; 14 reducing valve; 15 safety valve
itembatch systemflow system
processing efficiencylow due to batch operationhigh due to continuous flow
heating time for materiallong due to simultaneous heating of reactor, water, and materialshort due to water preheating and constant reactor
energy consumptionlarge due to energy loss when coolingsmall due to energy recovery when cooling
condition controleasy due to independent parameters including concentration, temperature, and reaction timehard due to interaction among concentration, reaction time, and pump flow
academic valuesignificantpoor
Tab.1  Respective characteristics of batch system and flow system for the hydrothermal conversion of lignocellulosic waste
Fig.4  Yield variation of cellobiose, cellotriose, cellotetraose, and cellopentaose hydrolysis at 300°C
Fig.5  Processes of cellulose dissolution and hydrolysis (dotted lines represent hydrogen bonds)
Fig.6  Semi-flow reaction system for the hydrothermal conversion of lignocelluloses
1 water tank, 2 water pump; 3 preheater; 4 temperature control system; 5 dissolution reactor; 6 raw material; 7 filter screen; 8 water cooler; 9 hydrolysis reactor; 10 filter; 11 product collector
1 Yu Y, Lou X, Wu H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy & Fuels , 2008, 22(1): 46–60
doi: 10.1021/ef700292p
2 Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology , 2005, 96(6): 673–686
doi: 10.1016/j.biortech.2004.06.025 pmid:15588770
3 Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews , 2006, 106(9): 4044–4098
doi: 10.1021/cr068360d pmid:16967928
4 Sun Y, Zhuang J, Lin L, Ouyang P. Clean conversion of cellulose into fermentable glucose. Biotechnology Advances , 2009, 27(5): 625–632
doi: 10.1016/j.biotechadv.2009.04.023 pmid:19409478
5 Varga E, Schmidt A S, Réczey K, Thomsen A B. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology , 2003, 104(1): 37–50
doi: 10.1385/ABAB:104:1:37 pmid:12495204
6 Carrillo F, Lis M J, Colom X, López-Mesas M, Valldeperas J. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: Kinetic study. Process Biochemistry , 2005, 40(10): 3360–3364
doi: 10.1016/j.procbio.2005.03.003
7 Garrote G, Domínguez H, Parajó J C. Hydrothermal processing of lignocellulosic materials. Holz als Roh-und Werkstoff , 1999, 57(3): 191–202
doi: 10.1007/s001070050039
8 Bonn G, Concin R, Bobleter O. Hydrothermolysis—a new process for the utilization of biomass. Wood Science and Technology , 1983, 17(3): 195–202
doi: 10.1007/BF00372318
9 Adschiri T, Hirose S, Malaluan R, Arai K. Noncatalytic conversion of cellulose in supercritical and subcritical water. Journal of Chemical Engineering of Japan , 1993, 26(6): 676–680
doi: 10.1252/jcej.26.676
10 Díaz M J, Cara C, Ruiz E, Romero I, Moya M, Castro E. Hydrothermal pre-treatment of rapeseed straw. Bioresource Technology , 2010, 101(7): 2428–2435
doi: 10.1016/j.biortech.2009.10.085 pmid:19939678
11 Boussarsar H, Rogé B, Mathlouthi M. Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresource Technology , 2009, 100(24): 6537–6542
doi: 10.1016/j.biortech.2009.07.019 pmid:19664914
12 Zhuang X, Yuan Z, Ma L, Wu C, Xu M, Xu J, Zhu S, Qi W. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnology Advances , 2009, 27(5): 578–582
doi: 10.1016/j.biotechadv.2009.04.019 pmid:19397989
13 Kang P, Qin W, Zheng Z M, Dong C Q, Yang Y P. Theoretical study on the mechanisms of cellulose dissolution and precipitation in the phosphoric acid-acetone process. Carbohydrate Polymers , 2012, 90(4): 1771–1778
doi: 10.1016/j.carbpol.2012.07.068 pmid:22944446
14 Zhao Y, Lu W J, Wang H T. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chemical Engineering Journal , 2009, 150(2–3): 411–417
doi: 10.1016/j.cej.2009.01.026
15 Zhao Y, Lu W J, Wang H T, Yang J L. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology. Bioresource Technology , 2009, 100(23): 5884–5889
doi: 10.1016/j.biortech.2009.06.079 pmid:19616938
16 Jin F, Enomoto H. Application of hydrothermal reaction to conversion of plant-origin biomasses into acetic and lactic acids. Journal of Materials Science , 2008, 43(7): 2463–2471
doi: 10.1007/s10853-007-2013-z
17 Jin F, Zhou Z, Kishita A, Enomoto H. Hydrothermal conversion of biomass into acetic acid. Journal of Materials Science , 2006, 41(5): 1495–1500
doi: 10.1007/s10853-006-7493-8
18 Thomsen M H, Thygesen A, Thomsen A B. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresource Technology , 2008, 99(10): 4221–4228
doi: 10.1016/j.biortech.2007.08.054 pmid:17936621
19 Sasaki M, Fang Z, Fukushima Y, Adschiri T, Ara K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research , 2000, 39(8): 2883–2890
doi: 10.1021/ie990690j
20 Kabyemela B M, Adschiri T, Malaluan R M, Arai K. Kinetics of Glucose Epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research , 1997, 36(5): 1552–1558
doi: 10.1021/ie960250h
21 Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K. Cellulose hydrolysis in subcritical and supercritical water. Journal of Supercritical Fluids , 1998, 13(1–3): 261–268
doi: 10.1016/S0896-8446(98)00060-6
22 Resende F L P, Neff M E, Savage P E. Noncatalytic gasification of cellulose in supercritical water. Energy & Fuels , 2007, 21(6): 3637–3643
doi: 10.1021/ef7002206
23 Macdonald D D, Kriksunov L B. Probing the chemical and electrochemical properties of SCWO systems. Electrochimica Acta , 2001, 47(5): 775–790
doi: 10.1016/S0013-4686(01)00758-7
24 Saka S, Ueno T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose (London, England) , 1999, 6(3): 177–191
doi: 10.1023/A:1009232508644
25 Yoshida T, Nonaka H, Matsumura Y. Hydrothermal treatment of cellulose as a pretreatment for ethanol fermentation: Cellulose hydrolysis experiments. Journal of the Japan Institute of Energy , 2005, 84(7): 544–548
doi: 10.3775/jie.84.544
26 Ehara K, Saka S. A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose (London, England) , 2002, 9(3/4): 301–311
doi: 10.1023/A:1021192711007
27 Jin F, Zhou Z, Enomoto H, Moriya T, Higashijima H. Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid–base catalytic effect of subcritical water. Chemistry Letters , 2004, 33(2): 126–127
doi: 10.1246/cl.2004.126
28 Kabyemela B M, Takigawa M, Adschiri T, Malaluan R M, Arai K. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water. Industrial & Engineering Chemistry Research , 1998, 37(2): 357–361
doi: 10.1021/ie9704408
29 Feng W, van der Kooi H J, de Swaan Arons J. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chemical Engineering and Processing , 2004, 43(12): 1459–1467
doi: 10.1016/j.cep.2004.01.004
30 Mochidzuki K, Sakoda A, Suzuki M. Liquid-phase thermogravimetric measurement of reaction kinetics of the conversion of biomass wastes in pressurized hot water: a kinetic study. Advances in Environmental Research , 2003, 7(2): 421–428
doi: 10.1016/S1093-0191(02)00014-X
31 Ogihara Y, Smith R L Jr, Inomata H, Arai K. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities. Cellulose (London, England) , 2005, 12(6): 595–606
doi: 10.1007/s10570-005-9008-1
32 Ehara K, Saka S. Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. Journal of Wood Science , 2005, 51(2): 148–153
doi: 10.1007/s10086-004-0626-2
33 Zhao Y, Lu W J, Wang H T, Li D. Combined supercritical and subcritical process for cellulose hydrolysis to fermentable hexoses. Environmental Science & Technology , 2009, 43(5): 1565–1570
doi: 10.1021/es803122f pmid:19350936
34 Petersen M O, Larsen J, Thomsen M H. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass and Bioenergy , 2009, 33(5): 834–840
doi: 10.1016/j.biombioe.2009.01.004
35 Zhao Y, Wang H T, Lu W J, Wang H. Combined supercritical and subcritical conversion of cellulose for fermentable hexose production in a flow reaction system. Chemical Engineering Journal , 2011, 166(3): 868–872
doi: 10.1016/j.cej.2010.11.058
36 Zhao Y, Lu W J, Wu H Y, Liu J W, Wang H T. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system. Bioresource Technology , 2012, 126: 391–396
doi: 10.1016/j.biortech.2012.03.001 pmid:22459955
37 S?na? A, Gülbaya S, Uskana B, Güllü M. Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose. Journal of Supercritical Fluids , 2009, 50(2): 121–127
doi: 10.1016/j.supflu.2009.05.009
38 Kumar S, Gupta R B. Hydrolysis of microcrystalline cellulose in subcritical and supercritical water in a continuous flow reactor. Industrial & Engineering Chemistry Research , 2008, 47(23): 9321–9329
doi: 10.1021/ie801102j
39 Matsunaga M, Matsui H, Otsuka Y, Yamamoto S. Chemical conversion of wood by treatment in a semi-batch reactor with subcritical water. Journal of Supercritical Fluids , 2008, 44(3): 364–369
doi: 10.1016/j.supflu.2007.09.011
40 Rogalinski T, Liu K, Albrecht T, Brunner G. Hydrolysis kinetics of biopolymers in subcritical water. Journal of Supercritical Fluids , 2008, 46(3): 335–341
doi: 10.1016/j.supflu.2007.09.037
41 Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences , 2008, 9(9): 1621–1651
doi: 10.3390/ijms9091621 pmid:19325822
42 Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T. Supercritical water treatment of biomass for energy and material recovery. Combustion Science and Technology , 2006, 178(1–3): 509–536
doi: 10.1080/00102200500290815
43 Lu X, Yamauchi K, Phaiboonsilpa N, Saka S. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. Journal of Wood Science , 2009, 55(5): 367–375
doi: 10.1007/s10086-009-1040-6
44 Suryawati L, Wilkins M R, Bellmer D D, Huhnke R L, Maness N O, Banat I M. Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochemistry , 2009, 44(5): 540–545
doi: 10.1016/j.procbio.2009.01.011
45 Le Moigne N, Navard P. Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose (London, England) , 2010, 17(1): 31–45
doi: 10.1007/s10570-009-9370-5
46 Driemeier C, Pimenta M T B, Rocha G J M, Oliveira M M, Mello D B, Maziero P, Goncalves A R. Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose (London, England) , 2011, 18(6): 1509–1519
doi: 10.1007/s10570-011-9592-1
47 Kumar S, Gupta R, Lee Y Y, Gupta R B. Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresource Technology , 2010, 101(4): 1337–1347
doi: 10.1016/j.biortech.2009.09.035 pmid:19818604
48 Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G. The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresource Technology , 2011, 102(19): 9272–9278
doi: 10.1016/j.biortech.2011.06.044 pmid:21763128
49 Kamio E, Sato H, Takahashi S, Noda H, Fukuhara C, Okamura T. Liquefaction kinetics of cellulose treated by hot compressed water under variable temperature conditions. Journal of Materials Science , 2008, 43(7): 2179–2188
doi: 10.1007/s10853-007-2043-6
50 Saka S. Recent progress in supercritical fluid science for biofuel production from woody biomass. Forestry Studies in China , 2006, 8(3): 9–15
doi: 10.1007/s11632-006-0016-5
51 Tymchyshyn M, Xu C C. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresource Technology , 2010, 101(7): 2483–2490
doi: 10.1016/j.biortech.2009.11.091 pmid:20031393
52 Lü X, Saka S. New insights on monosaccharides’ isomerization, dehydration and fragmentation in hot-compressed water. Journal of Supercritical Fluids , 2012, 61: 146–156
doi: 10.1016/j.supflu.2011.09.005
53 Hosoya T, Kawamoto H, Saka S. Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis , 2007, 80(1): 118–125
doi: 10.1016/j.jaap.2007.01.006
54 Hashaikeh R, Fang Z, Butler I S, Hawari J, Kozinski J A. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel , 2007, 86(10–11): 1614–1622
doi: 10.1016/j.fuel.2006.11.005
55 Lü X, Saka S. Hydrolysis of Japanese beech by batch and semi-flow water under subcritical temperatures and pressures. Biomass and Bioenergy , 2010, 34(8): 1089–1097
doi: 10.1016/j.biombioe.2010.02.015
56 Zhang C, Zhu J Y, Gleisner R, Sessions J. Fractionation of forest residues of douglas-fir for fermentable sugar production by SPORL pretreatment. Bioenergy Research , 2012, 5(4): 978–988
doi: 10.1007/s12155-012-9213-3
57 Van Dyk J S, Pletschke B I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances , 2012, 30(6): 1458–1480
doi: 10.1016/j.biotechadv.2012.03.002 pmid:22445788
58 Chu Q L, Li X, Ma B, Xu Y, Ouyang J, Zhu J J, Yu S Y, Yong Q. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Bioresource Technology , 2012, 123: 699–702
doi: 10.1016/j.biortech.2012.07.118 pmid:22975252
59 Wei L, Shrestha A, Tu M, Adhikari S. Effects of surfactant on biochemical and hydrothermal conversion of softwood hemicellulose to ethanol and furan derivatives. Process Biochemistry , 2011, 46(9): 1785–1792
doi: 10.1016/j.procbio.2011.06.001
60 Faga B A, Wilkins M R, Banat I M. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresource Technology , 2010, 101(7): 2273–2279
doi: 10.1016/j.biortech.2009.11.001 pmid:19939673
Related articles from Frontiers Journals
[1] Jianzhang Sun, Baoyu Gao, Yuanxia Luo, Moxi Xue, Xing Xu, Qinyan Yue, Yan Wang. Application and mechanism of polysaccharide extracted from Enteromorpha to remove nano-ZnO and humic acid in coagulation process[J]. Front. Environ. Sci. Eng., 2018, 12(3): 11-.
[2] Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie. Phenolic compounds removal by wet air oxidation based processes[J]. Front. Environ. Sci. Eng., 2018, 12(1): 1-.
[3] Nan ZHAO,Qingzhu ZHANG,Wenxing WANG. Heterogeneous reaction mechanism of gaseous HNO3 with solid NaCl: a density functional theory study[J]. Front. Environ. Sci. Eng., 2016, 10(5): 3-.
[4] Jiwan SINGH, Yoon-Young CHANG, Jae-Kyu YANG, Seon-Hong KANG, Janardhan Reddy KODURU. Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water[J]. Front. Environ. Sci. Eng., 2016, 10(4): 9-.
[5] Boxiong SHEN,Jianhong CHEN,Ji CAI. Removal of elemental mercury by KI-impregnated clay[J]. Front. Environ. Sci. Eng., 2016, 10(2): 236-243.
[6] Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI. Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water[J]. Front. Environ. Sci. Eng., 2015, 9(5): 850-860.
[7] Man ZHANG,Feng HE,Dongye ZHAO. Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic structure and nature of adsorption[J]. Front. Environ. Sci. Eng., 2015, 9(5): 888-896.
[8] Rongbing FU,Na MU,Xiaopin GUO,Zhen XU,Dongsu BI. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron[J]. Front. Environ. Sci. Eng., 2015, 9(5): 867-878.
[9] Chaoyang DU,Jingjie YU,Huaping ZHONG,Dandan WANG. Operating mechanism and set pair analysis model of a sustainable water resources system[J]. Front. Environ. Sci. Eng., 2015, 9(2): 288-297.
[10] Yao NIE,Shubo DENG,Bin WANG,Jun HUANG,Gang YU. Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads[J]. Front.Environ.Sci.Eng., 2014, 8(5): 675-682.
[11] LI Wei,HU Mengze. An overview of the environmental finance policies in China: retrofitting an integrated mechanism for environmental management[J]. Front.Environ.Sci.Eng., 2014, 8(3): 316-328.
[12] XIA Qing,KONG Deyang,LIU Guoqiang,HUANG Qingguo,ALALEWI Aamr,LU Junhe. Removal of 17β-estradiol in laccase catalyzed treatment processes[J]. Front.Environ.Sci.Eng., 2014, 8(3): 372-378.
[13] Qing ZHANG. Predictive models on photolysis and photoinduced toxicity of persistent organic chemicals[J]. Front Envir Sci Eng, 2013, 7(6): 803-814.
[14] Farhah Amalya ISMAIL, Ahmad Zaharin ARIS. Experimental determination of Cd2+ adsorption mechanism on low-cost biological waste[J]. Front Envir Sci Eng, 2013, 7(3): 356-364.
[15] Mingsong WU, Junli HUANG, Yuling ZHANG, Shijie YOU, Shaofeng LI, Zhilin RAN, Yu TIAN. Characterization of chlorine dioxide as disinfectant for the removal of low concentration microcystins[J]. Front Envir Sci Eng, 2012, 6(1): 75-81.
Full text